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We present a simple approach to Anderson localization in one-dimensional disordered lattices. We
introduce the tight-binding model in which one orbital and a single random energy are assigned to
each lattice site, and the hopping integrals are constant and restricted to nearest-neighbor sites. The
localization of eigenstates is explained by two-parameter scaling arguments. We compare the size
scaling of the level spacing in the bare energy spectrum of the quasi-particle~in the ideal lattice!
with the size scaling of the renormalized disorder seen by the quasi-particle. The former decreases
faster than the latter with increasing system size, giving rise to mixing and to the localization of the
bare quasi-particle wave functions in the thermodynamic limit. We also provide a self-consistent
calculation of the localization length and show how this length can be obtained from optical
absorption spectra for Frenkel excitons. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Low temperature quantum phenomena in crystalline s
ids, such as charge and energy transport, optical absorp
and thermal properties, can be understood in terms of qu
particles. According to Bloch’s theorem, a quasi-parti
wave function in a periodic lattice is the product of a pe
odic function, which reflects the full translational symmet
of the lattice, and a plane wave.1 Consequently, the quas
particle probability amplitudes are extended over the en
lattice, that is, the states are delocalized in space.

Noncrystalline matter, such as amorphous metals
semiconductors or molecular aggregates, is characterize
random arrangements of atoms or molecules.2 Because the
crystal potential is nonperiodic, Bloch’s theorem is no long
valid. Therefore, quasi-particle states are not expected t
Bloch functions. The simplest model that describes the
ture of one-particle states in disordered matter was in
duced by Anderson.3 In this seminal paper, Anderson esta
lished that the quasi-particle states in three dimensi
became localized for sufficiently large disorder. Localizati
means that the quasi-particle probability amplitude is non
nishing only in a finite region of the solid. In 1977, Ande
son, Mott, and van Vleck were awarded the Nobel prize ‘‘
their fundamental theoretical investigations of the electro
structure of magnetic and disordered systems.’’4 Despite its
forty-year history, Anderson localization still excites mu
interest among researchers.

We note that Anderson localization in low-dimension
disordered solids has its own peculiarities. In this conte
Mott and Twose made the statement that in one dimensio
the states of random systems become exponentially loca
for any amount of disorder.5 Abrahamset al.6 confirmed this
statement by introducing a single-parameter scaling theor
localization and extended the Mott–Twose conclusion
two-dimensional systems as well.~See Refs. 7–9 for a com
prehensive review.! The single-parameter scaling theo
works remarkably well in random media with time-revers
symmetry, uncorrelated disorder, and finite-range hoppin

In this paper we consider the tight-binding model in whi
one orbital and a single random energy are assigned to
site of a one-dimensional lattice, while the intersite coupl
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does not fluctuate. The localization of the wave function
explained by the different size scaling of two paramete
namely the level spacing of the bare quasi-particle ene
spectrum~in the ideal lattice! and the renormalized disorde
seen by the quasi-particles. For this reason, quasi-par
states in this model are always localized in the thermo
namic limit. We also provide a self-consistent rule for es
mating the localization length and discuss the effects of d
order on the optical response of the quasi-particles know
Frenkel excitons.10–12

II. TIGHT-BINDING MODEL

We first consider an electron moving in a potentialV(r )
and assume thatV(r ) is the superposition of atomic poten
tials vk(r ). Although we will mostly discuss one
dimensional systems, we introduce the tight-binding fram
work for arbitrary dimensiond. We are interested in the
stationary Schro¨dinger equation for the wave functionC(r )

F2
1

2m
¹21(

k
vk~r2r k!GC~r !5EC~r !, ~1!

where r k is the position of thekth atom and the sum run
over all atoms in the solid. The Planck constant\ is set to
unity throughout the paper. We assume that each atom
ports only one bound state, although more complicated s
ations can be handled in a similar fashion.

We seek a solution of Eq.~1! in the form

C~r !5(
j

c jx j~r2r j !, ~2!

where x j (r2r j ) and c j are the j th atomic orbital and its
amplitude, respectively. The atomic orbitalsx j (r2r j ) can be
found by solving the corresponding Schro¨dinger equation for
a single atom

F2
1

2m
¹21v j~r2r j !Gx j~r2r j !5« jx j~r2r j !, ~3!
226jp © 2004 American Association of Physics Teachers
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where « j is the electron energy in thej th atom when the
other atoms are far apart. If we substitute Eq.~2! into Eq.~1!
and use Eq.~3!, we obtain

(
j

F« j2E1(
kÞ j

vk~r2r k!Gc jx j~r2r j !50. ~4!

We proceed in the standard fashion to obtain the elec
amplitudec j at any site. We multiply Eq.~4! by x l* (r2r l)
from the left and perform the integration over the volume
the solid. By doing so, we are led to the following algebra
equation for the amplitudes:

(
j

F ~« j2E!Ãl , j1(
kÞ j

B̃l ,k, j Gc j50, ~5a!

where

Ãl , j5E drx l* ~r2r l !x j~r2r j !, ~5b!

B̃l ,k, j5E drx l* ~r2r l !vk~r2r k!x j~r2r j ! ~kÞ j !.

~5c!

Equation ~5! is valid for any superposition of arbitrar
atomic potentialsv j . The coefficientsÃl , j and B̃l ,k, j depend
only on the particular choice for the atomic potentialsv j .
Their values for the one-dimensional Kronig–Penney mo
with d-function potentials are found in Ref. 13.

To find the electron wave function~2!, we must solve Eq.
~5a!. Clearly, this is hardly possible when the number
atoms is very large. We will consider a suitable approxim
tion to reduce the number of coefficients involved in t
calculation. We suppose that the electrons are tightly bou
so that the overlap between the orbitals of neighboring ato
is negligible. Whenever this condition holds, we can repla
Ãl , j by d l j . For the three-center integrals in Eq.~5c!, we

assume that the only nonvanishing coefficients areB̃l ,l ,l 1z ,
wherez indicates nearest-neighbor sites, that is, only near
neighbor interactions are significant. Further simplification
achieved by assuming thatB̃l ,l ,l 1z do not fluctuate and hav

the value B̃l ,l ,l 1z52J (J.0 without lose of generality!.
This assumption implies that we restrict our consideration
a regular but realistic lattice because the on-site energie« j
may fluctuate. This model is usually referred to as the tig
binding model with diagonal disorder. The Schro¨dinger
equation for the amplitudes is now

« lc l2J(
z

c l 1z5Ec l , ~6!

where the sum runs over nearest-neighbor sites. Equatio~6!
was used by Anderson in his work on the localizatio
delocalization transition in three-dimensional systems.3

III. NONDISORDERED LATTICE

The tight-binding equation~6! can be easily solved in th
limit of nonfluctuating on-site energies:« l5 «̄5constant,
that is, for an ideal lattice. As an example, let us conside
simple cubic lattice in ad-dimensional space withN atoms
along each spatial direction. Thus, the lattice consists oN
227 Am. J. Phys., Vol. 72, No. 2, February 2004
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5Nd identical atoms. We assume periodic boundary con
tions and use the Bloch theorem, which allows us to wr
the solution of Eq.~6! in the form

c l
0~K !5

1

ANexp~ iK "Rl !, ~7!

where K5(2p/Na)(k1 ,k2 ,...,kd) is the d-dimensional
crystal momentum of the electron state,Rl

5( l 1a,l 2a,...,l da) denotes thed spatial coordinates,a is the
lattice spacing, andl j , kj are integers (0< l j ,kj<N21).
Note that the probabilityuc l

0(K )u2 of finding the electron at
one particular atom of the solid is constant and equals 1N,
that is, the electron is extended uniformly over the lattice
we substitute Eq.~7! into Eq. ~6!, we obtain the dispersion
relation for ad-dimensional cubic lattice

EK
0 5 «̄22J(

j 51

d

cos~K j !. ~8!

The superscript 0 refers to the absence of disorder andK j

52pkj /N. The energy width of the spectrum in the simp
d-dimensional lattice is then given byW54Jd.

IV. DISORDERED LATTICE: PERTURBATIVE
LIMIT

In a disordered lattice, the on-site energies« l are different
for different sites. In the following, we will consider onl
one-dimensional systems. Then the equation of motion~6!
can be rewritten as

Dlc l1 «̄c l2Jc l 112Jc l 215Ec l , ~9!

whereDl[« l2 «̄ is the deviation of the site energy from it
mean«̄. We will assume thatDl is uncorrelated for different
sites and distributed according to a Gaussian distribution

P~Dl !5~2ps2!21/2exp~2Dl
2/2s2!, ~10!

where ^Dl&50 and the standard deviations5^DlDl&
1/2.

The angular bracketŝ...& denote an average over the dist
bution P.

We now rewrite Eq.~9! in theK-representation. To do so
we multiply Eq. ~9! by the Bloch wave in Eq.~7! and sum
over the site numbers. We obtain

~E2EK
0 !c~K !5(

K8
VKK8c~K8!, ~11!

whereEK
0 is given by Eq.~8! with d51, and the other vari-

ables are

c~K !5
1

AN
(

l
c le

iKla , ~12a!

VKK85
1

N (
l 50

N21

Dle
i (K2K8) la. ~12b!

The diagonal matrix elements,VKK , simply give an en-
ergy shift of the correspondingKth state

DEK5VKK5
1

N (
l 50

N21

Dl , ~13!
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t

-

u
s.

y
a

q
n

th
r

a
in

t
er
g
e

ed

-

ixed
ion,

in
than

ates
ss,
spe-

si-
e
c-
at

be

t

box,
and

an
tiv
and turn out to be independent of the state, but dependen
the particular realization of the random variables$Dl%. The
shift has zero mean because^Dl&50. The variance is non
zero and is given by

BKK[^~DEK!2&5
1

N2 (
l ,l 850

N21

^DlDl 8&

5
1

N2 (
l 50

N21

^Dl
2&5

s2

N
. ~14!

We have used the fact that^DlDl 8&50 for lÞ l 8. For an
ensemble of lattices, the disorder-induced energy shift res
in inhomogeneous broadening of the quasi-particle level

The off-diagonal matrix elements elements,VKK8 , de-
scribe mixing~or scattering! of the quasi-particle states; the
are the quantities that are responsible for localization. Ag
we obtain^VKK8&50 becausêDl&50, while the variance is

BKK85^uVKK8u
2&5

s2

N
, ~15!

which is equal to the variance of the energy shift given in E
~14!. Thus,ABKK85s/AN represents the typical fluctuatio
of the couplingVKK8 between differentK states. For a given
lattice size, the disorder is perturbative provided thatVKK8 is
small compared to the level spacingdE0 in the ideal lattice
@see Fig. 1~a!#:

dE0@
s

AN
5seff . ~16!

In this case, the mixing of Bloch states is weak and
perturbed states are expected to remain extended ove
whole lattice. The electron~or any other quasi-particle! sees
an effective~averaged! disorder whose magnitude is 1/AN
smaller than the bare magnitude of the disorder,s. This ef-
fect is known asexchange narrowing. Note that it is the
exchange-narrowed value of disorder that we must comp
with the level spacing in the ideal system to determ
whether the disorder is perturbative or not.

From these arguments we cannot conclude whether
states will remain extended or will be localized in the th
modynamic limitN→`. According to the standard scalin
theory, they should be localized.6 The reasoning relies on th

Fig. 1. Schematic diagram of~a! perturbative and~b! nonperturbative dis-
order. The solid lines are the lowest energy levels in the ideal lattice,
dE0 is the level spacing. The thick arrows indicate the value of the effec
disorder,seff5s/AN.
228 Am. J. Phys., Vol. 72, No. 2, February 2004
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fact that dE0 and seff scale with the system sizeN in a
different way. Let us consider the bottom of the unperturb
spectrum,K!1, where the dispersion relation~8! is para-
bolic, EK

0 5 «̄22J1JK2, and the level spacing is a mini
mum. Then fordE0 we obtain

dE0.
4p2J

N2 . ~17!

We see thatdE0 decreases faster thanseff with increasingN.
In other words, if the disorder is perturbative for a givenN,
it will be nonperturbative for a largerN and the inequality
~16! would be reversed~see Fig. 2!. Consequently, for a large
enough system, the Bloch states are always strongly m
and localization occurs as expected. Therefore, the condit

dE05seff , ~18!

indicates the onset of localization for a given lattice size,
the sense that the localization length becomes smaller
the lattice length.

V. DISORDERED LATTICE: NONPERTURBATIVE
LIMIT

For moderately high disorder and large systems, the st
are spatially localized. Despite the underlying randomne
some regularities are observed in the energy spectrum,
cifically at the band edges. We briefly recall the local~hid-
den! energy structure of localized one-dimensional qua
particles, which was shown to exist in the vicinity of th
band edge.14–16 The idea is that the low-energy eigenfun
tions for a fixed realization of the disorder are localized
nonoverlapping segments~see Fig. 3! of typical sizeN* ~lo-
calization length!. Some of these localized states can
grouped into local groups of two~or sometimes more! states
that are localized at the sameN* segment~see the states
joined by ellipses in Fig. 3!. In each segment, the lowes
levels are arranged according to Eq.~8!, but with N replaced
by the segment length,N* . Note that the wave functions
associated with each segment resemble a particle in a
that is, they have an almost perfect reflection symmetry
the number of nodes increases with energy.

d
e

Fig. 2. Schematic of the scaling of the level spacing in the ideal lattice,dE0,
and the effective magnitude of disorder,seff , for small enoughs.
228F. Domı´nguez-Adame and V. A. Malyshev
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To estimateN* we follow Ref. 14. We should use the fa
that the lowest levels within a localization segment resem
the levels of an ideal lattice of sizeN* . In such a case, the
localization length is exactly the system length~that is, the
segment length!, and we can then use the onset conditi
~18! with N replaced byN* . We obtain

N* 5S 4p2J

s D 2/3

511.59S J

s D 2/3

. ~19!

The numerical factor depends slightly on the boundary c
ditions, and it is found that N* 5(3p2J/s)2/3

.9.57(J/s)2/3 for an open chain. In spite of the simplicity o
the underlying reasoning, Eq.~19! for estimatingN* yields
surprisingly good results. An extensive numerical analys17

has showed thatN* 58.71(J/s)0.67. In addition, the concep
of N* works well for correlated disorder.16

VI. OPTICAL ABSORPTION BY FRENKEL
EXCITONS

It is well established that the lowest optical excitation
linear molecular aggregates ~more specifically,
J-aggregates18,19! are Frenkel excitons~see, for instance, Ref
20!. These quasi-particles arise due to the resonant dipo
dipole interaction of molecules10 and drive the energy trans
port and optical properties in molecular aggregates. In
nearest-neighbor approximation, the wave functions of Fr
kel excitons obey Eq.~9!, in which « l5 «̄1Dl now should
be considered as the energy of transition in thel th molecule.
Thus, the previous results regarding localization also can
applied to Frenkel excitons in J-aggregates.

The major contribution to the linear optical response
J-aggregates (J.0) is determined by the states in the vici
ity of the bottom of the exciton band. For aggregates sm
compared to the emission wavelength, where the dipole
proximation for the light-matter interaction becomes val
the absorption band~J-band! is found to be

Fig. 3. States in the vicinity of the bottom of the band. The states
obtained by diagonalizing of Eq.~9! for a disordered linear chain of 300
sites. The magnitude of the disorder iss50.2J. The energy of each state i
in units ofJ. The wave function amplitude is in arbitrary units. It is clear
seen that some lower states can be grouped into local groups~the groups are
joined by ellipses!. The states within each group are localized at the sa
segment of typical sizeN* .
229 Am. J. Phys., Vol. 72, No. 2, February 2004
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I ~E!5
1

N K (
n50

N21

Fn
2d~E2En!L , ~20a!

whereFn
2 is the dimensionless oscillator strength of thenth

state,

Fn
2[S (

l
c l~n! D 2

, ~20b!

and the oscillator strength of an isolated molecule is se
unity. From Eq.~20b! it follows that only exciton wave func-
tions at the bottom of the band contribute to the absorpt
because only they have noticeable oscillator strengths.

For an ideal circular J-aggregate, where the exciton w
functions are Bloch functions~7!, FK5NdK0 , that is, the
state withK50 carries the entire oscillator strength and
the only one that is coupled to light. Consequently, the
sorption spectrum contains only one peak located exactl
the bottom of the exciton band,EK50

0 5 «̄22J. In particular,
this fact explains the experimentally observed redshift of
J-band with respect to the absorption spectra of isolated m
ecules.

If we introduce a small Gaussian disorder which is pert
bative in the sense of Eq.~16!, the peak is broadened. How
ever, exciton wave function keeps the Gaussian form an
again centered at the bottom of the band,EK50

0 5 «̄22J. Its
standard deviation, equal toAB005s/AN, is a factor of
1/AN smaller than that for decoupled molecules, resembl
the exchange narrowing effect in the exciton absorpt
spectra.21

In the nonperturbative limit, the exciton wave function
that contribute to the J-band are mostly those that have
nodes within the localization segments~see Fig. 3!. They are
extended over segments of lengthN* given by Eq. ~19!.
Therefore, absorption spectra provide a unique way to m
sureN* .22 The standard deviation of the J-band~denoted by
s* ) can be estimated by replacingN by N* in the corre-
sponding expression for the perturbative limit,s/AN. We
obtain

s* 5
s

AN*
5

1

~4p2!1/3JS s

J D 4/3

50.29JS s

J D 4/3

. ~21!

As we have mentioned, the J-band is shifted to the red by
amount 2J relative to the monomer absorption spectrum.
this way, we can estimate the hopping integralJ with enough
precision. Furthermore, the J-band often appears as an
lated peak, so that its width also can be easily measured
also assume that the magnitude ofs can be extracted from
the monomer absorption spectrum. In this way, all the
rameters are known for calculatingN* using Eq.~21!. We
only need to replace the numerical factor 0.29 in Eq.~21! by
0.42, as suggested by numerical simulations.23

VII. CONCLUSIONS

We have discussed Anderson localization in on
dimensional disordered lattices in the vicinity of the ba
edges. We treated these systems within the tight-bind
model, in which the hopping integrals do not fluctuate a
are restricted to nearest-neighbor sites, while on-site ener

e

e
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are uncorrelated~for different sites! random numbers. We
made use of the fact that the size scaling of the bare le
spacing~in the ideal lattice! differs from that for the renor-
malized disorder~seen by the quasi-particles!. The former
(;N22) becomes small compared to the latter (;N21/2) for
N→`. Therefore, the bare wave functions will be strong
mixed by the disorder, giving rise to localization of th
quasi-particle states in the thermodynamic limit. Similar re
soning also applies for the center of the band where the
level spacing scales asN21. Nevertheless, the spacing d
creases withN faster than the renormalized magnitude
disorder. Consequently, all the states in the tight bind
model are localized for sufficiently large enoughN, no mat-
ter how small the degree of disorder.

We formulated a simple self-consistent relation for es
mating the localization length and discussed a relevant
perimental procedure to measure it in linear molecular ag
gates ~J-aggregates!, where localized quasi-particles a
represented by Frenkel excitons. Due to the strong coup
of Frenkel excitons to light, their localization length can
measured by analyzing the linear optical response.

We stress that the validity of the scaling arguments p
sented in the paper is not restricted to one-dimensional
tems. Indeed, it is well established that the standard th
dimensional Anderson model shows a localizatio
delocalization transition at the band center. In this model,
bare level spacing at the band center decreases asN21, while
the magnitude of the effective disorder decreases fa
;N23/2, and is thus unable to localize the states at the b
center for moderate disorder. Strong disorder~large com-
pared to the bandwidth! localizes the states. This reasonin
gives us insight into why the three-dimensional Anders
model shows a localization–delocalization transition. Th
scaling arguments provide a basis for understanding of
eral localization problems. The underlying ideas are base
standard perturbation theory, and knowledge of advan
quantum mechanics or field theory is not required. Thus,
believe that our approach is suitable for introductory cour
in solid state and condensed matter physics.
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19G. Scheibe, ‘‘Über die Vera¨nderung der Absorptionspektren in Lo¨sung und
die van der Waalss-chen Kra¨fte als Ihre Ursache,’’ Angew. Chem.50, 51
~1937!.

20J-Aggregates, edited by T. Kobayashi~World Scientific, Singapore, 1996!.
21E. W. Knapp, ‘‘Lineshapes of molecular aggregates. Exchange narrow

and intersite correlation,’’ Chem. Phys.85, 73–82~1984!.
22L. D. Bakalis and J. Knoester, ‘‘Linear absorption as a tool to measure

exciton delocalization length in molecular assemblies,’’ J. Lumin.87,
66–70~2000!.

23F. Domı́nguez-Adame and V. A. Malyshev, ‘‘Frenkel excitons in on
dimensional random systems with correlated disorder,’’ J. Lumin.83–84,
61–67~1999!.
230F. Domı´nguez-Adame and V. A. Malyshev


