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We present a simple approach to Anderson localization in one-dimensional disordered lattices. We
introduce the tight-binding model in which one orbital and a single random energy are assigned to
each lattice site, and the hopping integrals are constant and restricted to nearest-neighbor sites. The
localization of eigenstates is explained by two-parameter scaling arguments. We compare the size
scaling of the level spacing in the bare energy spectrum of the quasi-pditidlee ideal lattice

with the size scaling of the renormalized disorder seen by the quasi-particle. The former decreases
faster than the latter with increasing system size, giving rise to mixing and to the localization of the
bare quasi-particle wave functions in the thermodynamic limit. We also provide a self-consistent
calculation of the localization length and show how this length can be obtained from optical
absorption spectra for Frenkel excitons. 2004 American Association of Physics Teachers.
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[. INTRODUCTION does not fluctuate. The localization of the wave function is
explained by the different size scaling of two parameters,

Low temperature quantum phenomena in crystalline solnamely the level spacing of the bare quasi-particle energy
ids, such as charge and energy transport, optical absorptigipectrum(in the ideal lattice and the renormalized disorder
and thermal properties, can be understood in terms of quasteen by the quasi-particles. For this reason, quasi-particle
particles. According to Bloch's theorem, a quasi-particlestates in this model are always localized in the thermody-
wave function in a periodic lattice is the product of a peri- Namic limit. We also provide a self-consistent rule for esti-
odic function, which reflects the full translational symmetry Mmating the localization length and discuss the effects of dis-
of the lattice, and a plane waveConsequently, the quasi- order on the_ optlgallzresponse of the quasi-particles known as
particle probability amplitudes are extended over the entirdrenkel excitons?”
lattice, that is, the states are delocalized in space.

Noncrystalline matter, such as amorphous metals and
semiconductors or molecular aggregates, is characterized W TIGHT-BINDING MODEL
random arrangements of atoms or molecdl&ecause the
crystal potential is non_perio_dic, Bloch’s theorem is no longer We first consider an electron moving in a potenti4r)
valid. Therefore, quasi-particle states are not expected to be d that(r) is th i f atomi ten-
Bloch functions. The simplest model that describes the naand assume (r) is the superposition ot atomic poten
ture of one-particle states in disordered matter was introi'fdls v|_<(r). Although we will mostly_ d'S(.:US.S one-
duced by Andersof.In this seminal paper, Anderson estab- dimensional systems, we introduce the tight-binding frame-
lished that the quasi-particle states in three dimension&ork for arbitrary dimensiord. We are interested in the
became localized for sufficiently large disorder. Localizationstationary Schrdinger equation for the wave functiok(r)
means that the quasi-particle probability amplitude is nonva- 1
nishing only in a finite region of the solid. In 1977, Ander- T2 _ _
son, Mott, and van Vleck were awarded the Nobel prize “for 2mV +Ek olr=ri) | =E¥(r), @)
their fundamental theoretical investigations of the electronic
structure of magnetic and disordered systerfidespite its ~ Wherer, is the position of thekth atom and the sum runs
forty-year history, Anderson localization still excites much over all atoms in the solid. The Planck consténis set to
interest among researchers. unity throughout the paper. We assume that each atom sup-

We note that Anderson localization in low-dimensional ports only one bound state, although more complicated situ-
disordered solids has its own peculiarities. In this contextations can be handled in a similar fashion.

Mott and Twose made the statement that in one dimension all We seek a solution of Eq1) in the form

the states of random systems become exponentially localized

for any amount of dlsprdérAbrahamset al. Conflrr_ned this W(r)= E Yix;(r=r), )
statement by introducing a single-parameter scaling theory of ]

localization and extended the Mott—Twose conclusion to _ _ ) ]
two-dimensional systems as welBee Refs. 7—9 for a com- Where x;(r—r;) and ¢; are thejth atomic orbital and its
prehensive review. The single-parameter scaling theory amplitude, respectively. The atomic orbitadgr —r;) can be
works remarkably well in random media with time-reversalfound by solving the corresponding Schioger equation for
symmetry, uncorrelated disorder, and finite-range hopping. a single atom

In this paper we consider the tight-binding model in which
one orbital and a single random energy are assignedtoeach | _ — o2, .\ o N
site of a one-dimensional lattice, while the intersite coupling 2mV Foi(r=r) xy(r=rp=ejx(r=ry), ©
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where g; is the electron energy in thgth atom when the =N identical atoms. We assume periodic boundary condi-
other atoms are far apart. If we substitute E).into Eq.(1)  tions and use the Bloch theorem, which allows us to write
and use Eq(3), we obtain the solution of Eq(6) in the form

>

J

1 :
s,——E+gj vk(r—rk)}zﬁjxj(r—rj):O- 4 wP(K)=\/—Nexp(|K-R|), 7
We proceed in the standard fashion to obtain the electrojhere K =(27/Na)(ky Ky,....ks) is the d-dimensional

amplitudey; at any site. We multiply Eq(4) by x{'(r=r))  crystal momentum of the electron state,R
from the left and perform the integration over the volume of (| 3 |.a,... | ;a) denotes thel spatial coordinates is the

the so_lid. By doing so, we are led to the following algebraic|attice spacing, and;, k; are integers (&l ,kj<N—1).
equation for the amplitudes: Note that the probabilityy’(K)|? of finding the electron at

~ ~ _ one particular atom of the solid is constant and equal§ 1/
Z e E)A'JJF% B'vkvi}‘/’i_o’ (5a) that is, the electron is extended uniformly over the lattice. If
we substitute Eq(7) into Eq. (6), we obtain the dispersion
where relation for ad-dimensional cubic lattice
~ d
Al,j:f dryxi" (r—r)x;(r=rjp), (5b) EQ=5-2J>, cogK)). (8)
i=1
B, kaf drxf (r=rpoe(r—rx;(r=ry) (k#j). The superscript O refers to the absence of disorderkand
o =27k;/N. The energy width of the spectrum in the simple

(50)
Equation (5) is valid for any superposition of arbitrary

atomic potentials ;. The coefficientsA, ; andB, , ; depend

Only on the partiCUIar choice for the atomic potentials V. DISORDERED LATTICE: PERTURBATIVE
Their values for the one-dimensional Kronig—Penney modeLMlT

with &-function potentials are found in Ref. 13.

To find the e'e.CtFO” wave functi_o(ri), we must solve Eq. In a disordered lattice, the on-site energigsre different
(5. C!early, this is hardly poss[ble wher_1 the numbe_r Offor different sites. In the following, we will consider only
atoms is very large. We will consider a suitable approxima-o . _dimensional systems. Then the equation of mot&n
tion to reduce the number of coefficients involved in the an be rewritten as ’
calculation. We suppose that the electrons are tightly boundc,
so that the overlap between the orbitals of neighboring atoms D¢+ ey — I+ 1— I -1=Ey, (9)

is negligible. Whenever this condition holds, we can repIaCt.?NhereDlEgl_?is the deviation of the site energy from its

Ay j by 8. For the three-center integrals in EGRC), We  means. We will assume thab, is uncorrelated for different
assume that the only nonvanishing coefficients Byg, . ,, sites and distributed according to a Gaussian distribution
wherez indicates nearest-neighbor sites, that is, only nearest- _ 2 —1/2  N2/h .2

neighbor interactions are significant. Further simplification is P(D)=(2ma) "Fexp(— Dil2o”), (10
achieved by assuming th&f ., do not fluctuate and have Where (D;)=0 and the standard deviation=(D,D)**
the value§|,|,|+z= —J (3>0 without lose of generality The angular bracket§..) denote an average over the distri-

This assumption implies that we restrict our consideration t(?u\t/'\?n P. ite Ea(9) in the K ion. To d

a regular but realistic lattice because the on-site energies c r:tOV\ll reEW”tS bq(tz]mEtSI N h-repres_enltzatu;n. % 0 SO,
may fluctuate. This model is usually referred to as the tight'V& Multiply EQ.(9) by the Bloch wave in Eq(7) and sum
binding model with diagonal disorder. The Sctiimger CVE' the site numbers. We obtain

equation for the amplitudes is now

d-dimensional lattice is then given By=4Jd.

(E-EQi(K)=2 Vi (K", (11)
K!
g —J =Ey, 6
A zz 2= Eh ® whereE is given by Eq.(8) with d=1, and the other vari-
where the sum runs over nearest-neighbor sites. Equégjon 2Ples are
was used by Anderson in his work on the localization— 1 .
delocalization transition in three-dimensional systéms. W(K)= —NZ P ke, (12a
|
1 N—1
— i(K—K"I
lll. NONDISORDERED LATTICE Vi =g 2 DieltO, (12b)

The tight-binding equatio6) can be easily solved in the  The diagonal matrix element¥,cx, simply give an en-
limit of nonfluctuating on-site energies;=e=constant, ergy shift of the correspondinijth state
that is, for an ideal lattice. As an example, let us consider a LNt
simple cubic Iatt!ce in ad—dmensmnal space withl a‘Foms AE =Vix=— > D, (13)
along each spatial direction. Thus, the lattice consistd/of N =
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Fig. 1. Schematic diagram @& perturbative andb) nonperturbative dis-

order. The solid lines are the lowest energy levels in the ideal lattice, and
SEC is the level spacing. The thick arrows indicate the value of the effective
disorder,oe=o0/\N. log N

Fig. 2. Schematic of the scaling of the level spacing in the ideal latiE®,
and turn out to be independent of the state, but dependent éd the effective magnitude of disordety, for small enougtv.
the particular realization of the random variab{&s}. The
shift has zero mean becauég,)=0. The variance is non-

zero and is given by fact that SE° and o scale with the system sizd in a

different way. Let us consider the bottom of the unperturbed
_ N spectrum,K<1, where the dispersion relatiol) is para-

Bru=((AB¢)%) = N?, I,ZZO (DiDy) bolic, E;=e—2J+JK?, and the level spacing is a mini-

’ mum. Then forsE® we obtain

N—1

N—1 2

_i 29 2
=Nz |Zo (D)= N (14 SE0~ 4:\]72‘]. (17)

We have used the fact th@D D,,)=0 for |#1’. For an 0 i .
ensemble of lattices, the disorder-induced energy shift result}éve see thabk qlecrea;es fastgr tharg W'th mcreasm.g\l.
n other words, if the disorder is perturbative for a given

in inhomogeneous broadening of the quasi-particle levels. "~ X . k
The off-diagonal matrix elements element,, de- It will be nonperturbative for a largeN and the inequality
scribe mixing(or scattering of the quasi-particle states; they (16 would be reversedsee Fig. 2 Consequently, for a large

are the quantities that are responsible for localization. Agaifgnough system, the Bloch states are always strongly mixed
we obtain(Vy ) =0 becaus¢D;)=0, while the variance is and localization occurs as expected. Therefore, the condition,

2 SE%= 0oy, (18

— 2\ . . . . . . . .
By =(|Vkk|9) = N’ (19 indicates the onset of localization for a given lattice size, in

o _ o _ the sense that the localization length becomes smaller than
which is equal to the variance of the energy shift given in Eqthe |attice length.

(14). Thus, Bk = o/ N represents the typical fluctuation

of the couplingVkk: between differenK states. For a given V. DISORDERED LATTICE: NONPERTURBATIVE
lattice size, the disorder is perturbative provided Mgt  is  LIMIT
small compared to the level spaciag® in the ideal lattice

[see Fig. 19)]:

For moderately high disorder and large systems, the states
are spatially localized. Despite the underlying randomness,
o some regularities are observed in the energy spectrum, spe-
SE’> —==0f. (16)  cifically at the band edges. We briefly recall the logaid-
WN den energy structure of localized one-dimensional quasi-
In this case, the mixing of Bloch states is weak and theparticles, which was shown to exist in the vicinity of the
perturbed states are expected to remain extended over th@nd edgé?'®The idea is that the low-energy eigenfunc-
whole lattice. The electrofor any other quasi-particlesees  tions for a fixed realization of the disorder are localized at
an effective(averagedl disorder whose magnitude is\iM  nonoverlapping segmentsee Fig. 3 of typical sizeN* (lo-
smaller than the bare magnitude of the disorderThis ef- ~ calization length Some of these localized states can be
fect is known asexchange narrowingNote that it is the grouped into local groups of twir sometimes mopestates
exchange-narrowed value of disorder that we must comparéat are localized at the sani* segment(see the states
with the level spacing in the ideal system to determingjoined by ellipses in Fig. B In each segment, the lowest
whether the disorder is perturbative or not. levels are arranged according to E8), but with N replaced
From these arguments we cannot conclude whether thigy the segment lengti\*. Note that the wave functions
states will remain extended or will be localized in the ther-associated with each segment resemble a particle in a box,
modynamic limitN—o. According to the standard scaling that is, they have an almost perfect reflection symmetry and
theory, they should be localiz&dThe reasoning relies on the the number of nodes increases with energy.
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-2.05 1/t
A I(E)=N<VZO F§5(E—E,,)>, (203

—
“5 i L

2 -2.104 ‘ A \é\ggeFv is the dimensionless oscillator strength of tith

: a )

g i 2

2 -2.15 F%E(Z ¢;|(v)) , (20b)

S

[} i

[f] and the oscillator strength of an isolated molecule is set to

-2.20- unity. From Eq.(20b) it follows that only exciton wave func-
tions at the bottom of the band contribute to the absorption
' because only they have noticeable oscillator strengths.

250 300 For an ideal circular J-aggregate, where the exciton wave
functions are Bloch function$7), Fx=Ndkg, that is, the

Fig. 3. States in the vicinity of the bottom of the band. The states areState wWithK=0 carries the entire oscillator strength and is
obtained by diagonalizing of Eq9) for a disordered linear chain of 300 the only one that is coupled to light. Consequently, the ab-
sites. The magnitude of the disorderois-0.2). The energy of each state is  sorption spectrum contains only one peak located exactly at

in units of J. The wave function amplitude is in arbitrary units. It is clearly the bottom of the exciton banE,O =%~ 2J. In particular
seen that some lower states can be grouped into local gtthgogroups are K=0 ) ;

joined by ellipses The states within each group are localized at the samethls fact F’,'Xplams the eXpe”mental_ly observed erShlft of the
segment of typical sizél*. J-ballnd with respect to the absorption spectra of isolated mol-
ecules.
If we introduce a small Gaussian disorder which is pertur-
bative in the sense of E¢16), the peak is broadened. How-
To estimateN* we follow Ref. 14. We should use the fact ever, exciton wave function keeps the Gaussian form and is
that the lowest levels within a localization segment resembleagain centered at the bottom of the baB, ,=e—2J. Its

the levels of an ideal lattice of siz¢*. In such a case, the standard deviation, equal tgBg,=0c/\N, is a factor of

localization length is exactly the system lengthat is, the  1/,/N smaller than that for decoupled molecules, resembling
segment length and we can then use the onset conditionihe exchange narrowing effect in the exciton absorption

T T T

[ ! [ L [ L [
0 50 100 150 200
Site number

(18) with N replaced byN*. We obtain spectr&?
4727\ 2/3 7\2/3 In the nonperturbative limit, the exciton wave functions
N* =( :11.5€< —) . (190  that contribute to the J-band are mostly those that have no
g g

nodes within the localization segmeritee Fig. 3 They are
The numerical factor depends slightly on the boundary conextended over segments of lengif given by Eq.(19).
ditions, and it is found that N*=(372)/c)?®  Therefore, absorption spectra provide a unique way to mea-
=9.57(3/ o) %3 for an open chain. In spite of the simplicity of sureN*.?? The standard deviation of the J-bafuténoted by

the underlying reasoning, E(L9) for estimatingN* yields ¢*) can be estimated by replacig by N* in the corre-
surprisingly good results. An extensive numerical analysis sponding expression for the perturbative limit/\/N. We

has showed that* =8.71(J/¢)°®". In addition, the concept obtain

of N* works well for correlated disordé?. a3 a3
o 1 o o
* — _ — —

VI. OPTICAL ABSORPTION BY FRENKEL

As we have mentioned, the J-band is shifted to the red by an
EXCITONS

amount 2 relative to the monomer absorption spectrum. In
this way, we can estimate the hopping integralith enough
precision. Furthermore, the J-band often appears as an iso-
lated peak, so that its width also can be easily measured. We

It is well established that the lowest optical excitation in
linear  molecular  aggregates (more  specifically,

J-aggregaté&!d are Frenkel exciton&ee, for instance, Ref. :
20). These quasi-particles arise due to the resonant dipoleQISO assume that the magnitudecot:an be extracted from

dipole interaction of moleculé®and drive the energy trans- the monomer absorption spectrgm; In t.h's way, all the pa-
port and optical properties in molecular aggregates. In théaMeters are known for calculating® using Eq.(21). We
nearest-neighbor approximation, the wave functions of Fren@Nly need to replace the numerical _factor_EO%ZQ in €4) by
kel excitons obey Eq(9), in which &, =&+ D, now should 0-42. as suggested by numerical simulations.
be considered as the energy of transition inltihemolecule.
Thus, the previous results regarding localization also can be
applied to Frenkel excitons in J-aggregates. VII. CONCLUSIONS

The major contribution to the linear optical response in
J-aggregates](>0) is determined by the states in the vicin- We have discussed Anderson localization in one-
ity of the bottom of the exciton band. For aggregates smaltimensional disordered lattices in the vicinity of the band
compared to the emission wavelength, where the dipole apedges. We treated these systems within the tight-binding
proximation for the light-matter interaction becomes valid,model, in which the hopping integrals do not fluctuate and
the absorption ban@-band is found to be are restricted to nearest-neighbor sites, while on-site energies

229 Am. J. Phys., Vol. 72, No. 2, February 2004 F. Doguez-Adame and V. A. Malyshev 229



are uncorrelatedfor different sitey random numbers. We  *Electronic mail: adame@fis.ucm.es . .
made use of the fact that the size scaling of the bare |evef)0n leave from S. I. Vavilov State Optical Institute, Saint-Petersburg, Rus-
spacing(in the ideal latticg differs from that for the renor- "W, A. Harrison,Solid State TheoryDover, New York, 1980

maliz_ezd disorde(seen by the quaSi'partiCDeSThe_fSrmer 2J. M. Ziman,Models of DisordefCambridge U.P., Cambridge, 1979
(~N~2) becomes small compared to the latterN ~*/?) for 3p, W. Anderson, “Absence of diffusion in certain random lattices,” Phys.
N—o. Therefore, the bare wave functions will be strongly AReV- 109, 1492-15051958. .

mixed by the disorder, giving rise to localization of the For more information on the Nobel prize, sébttp://www.nobel.se/
quasi-particle states in the thermodynamic limit. Similar rea- LSics/laureates/1977/

; . °N. F. Mott and W. D. Twose, “The theory of impurity conduction,” Adv.
soning also applies for the center of the band where the barepyys 10 107-163(1961. Y paTY

level spacing scales d$™!. Nevertheless, the spacing de- E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,
creases withN faster than the renormalized magnitude of “Scaling theory of localization: Absence of quantum diffusion in two di-
disorder. Consequently, all the states in the tight binding,mensions.” Phys. Rev. Letd2, 673-676(1979.

del | lized f fficientlv | h ¢ D. J. Thouless, “Electrons in disordered systems and the theory of local-
model are localized for sufficiently large enoulyh no mat- ization,” Rep. Prog. Physl3, 93—142(1974).

ter how small the degree of disorder._ ) %P A Lee and T. V. Ramakrishnan, “Disordered electronic systems,” Rev.
We formulated a simple self-consistent relation for esti- Mod. Phys.57, 287-337(1985.

mating the localization length and discussed a relevant ex>B. Kramer and A. MacKinnon, “Localization: Theory and experiment,”

perimental procedure to measure it in linear molecular aggrelb‘?elg;e':lfe%. Pc?ﬁr?e ]if:ngs;jr?:ti:t)gnng. light into heat in solids. I,” Phys

gates (J-aggregates where localized quasi-particles are Rev.37, 17-44(193). g Y

represented bY Frenkel_ eXC|ton_S' Due.to t,he strong COUplmgA. S. Davydov,Theory of Molecular ExcitonéPlenum, New York, 19711

of Frenkel excitons to light, their localization length can bei2, . agranovich and M. D. Galanin, irElectronic Excitation Energy

measured by analyzing the linear optical response. Transfer in Condensed Matteedited by V. M. Agranovich and A. A.
We stress that the validity of the scaling arguments pre- Maradudin(North-Holland, Amsterdam, 1982

sented in the paper is not restricted to one-dimensional sys¥. Dominguez-Adame, E. Magja\. Khan, and C. L. Roy, “LCAO ap-

tems. Indeed, it is well established that the standard three_proach to non-relativistic and relativistic Kronig-Penney models,” Physica

dimensional Anderson model shows a localization—.2 222 67-74(1999.

L L . 4. A. Malyshev, “Localization length of a 1D exciton and temperature
delocalization transition at the band center. In this model, the dependence of the radiative lifetime in frozen dye-solutions with

bare level spacing at the band center decreasis aswhile J-aggregates,” Opt. Spectrostl, 505—-506(1991); “Localization length
the magnitude of the effective disorder decreases fasterof one-dimensional exciton and low-temperature behaviour of radiative
~N~22 and is thus unable to localize the states at the ban lifetime of J-aggregated dye solutions,” J. LumbBb, 225—-230(1993.

y . . ] . Malyshev and P. Moreno, “Hidden structure of the low-energy spec-
center for moderatg dlsord.er' Strong dlSOl‘(ﬂb!rge com- trum of a one-dimensional localized Frenkel exciton,” Phys. Re%1B
pared to the bandwidiHocalizes the states. This reasoning 145g7_145931995.
gives us insight into why the three-dimensional Andersortsy. a. Malyshev, A. Rodiguez, and F. Domguez-Adame, “Linear optical
model shows a localization—delocalization transition. Thus, properties of one-dimensional Frenkel exciton systems with intersite en-
scaling arguments provide a basis for understanding of sey-ergy correlations,” Phys. Rev. B0, 14140-141461999.
eral localization problems. The underlying ideas are based or*- V- Malyshev and V. A. Malyshev, *Statistics of low energy levels of a

. one-dimensional weakly localized Frenkel exciton: A numerical study,”
standard pertﬁrbanon tpelgryh and _knowledge_: 0(;‘ ackilvancedphys. Rev. B53, 195111(2000).
quantum mechanics or 'e, t gory IS nojc required. Thus, Wés g Jelley, “Spectral absorption and fluorescence of dyes in the molecu-
believe that our approach is suitable for introductory coursesiar state,” Nature(London 138 1009-10101936.

in solid state and condensed matter physics. 19G. Scheibe, “Wer die Veraderung der Absorptionspektren ifdimg und
die van der Waalss-chen Kta als Ihre Ursache,” Angew. Chens0, 51
(1937.
203-Aggregatesedited by T. KobayashWorld Scientific, Singapore, 1996
2IE. W. Knapp, “Lineshapes of molecular aggregates. Exchange narrowing
ACKNOWLEDGMENTS and intersite correlation,” Chem. Phy85, 73—82(1984).
2|, D. Bakalis and J. Knoester, “Linear absorption as a tool to measure the

. . - _ exciton delocalization length in molecular assemblies,” J. Lun8@i,
The authors are thankful for discussions with A. Rod 66-70(2000.

riguez and A. V. MalySheY' V. A. M. aCknOWIEdges SUppOI’tst. Domnguez-Adame and V. A. Malyshev, “Frenkel excitons in one-
through a NATO Fellowship. F. D-A. was supported by DGI-  dimensional random systems with correlated disorder,” J. Lu@#84,
MCyT (MAT2000-0734 and CAM (07N/0075/2001 61-67(1999.

230 Am. J. Phys., Vol. 72, No. 2, February 2004 F. Doguez-Adame and V. A. Malyshev 230



