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Introductory textbooks in solid state physics present solvable models for illustrating the occurrence

of allowed bands and forbidden gaps in the energy spectrum of Bloch electrons. However, the

quantum mechanical description of electrons in non-periodic solids, such as amorphous materials,

is beyond the scope of introductory courses because of its intrinsic complexity. The tight-binding

approximation can account for such a scenario by letting the atomic levels vary at random from

lattice site to site. We theoretically tackle the study of the average properties of the energy

spectrum by introducing a transfer matrix method that allows us to obtain closed expressions for

the so-called coherent potential. The coherent potential is energy-dependent and constant in space.

It replaces the actual atomic random potential, thus generating a periodic effective medium with

the same average properties as the non-periodic solid. We demonstrate that the average density of

states can be calculated within this framework without relying on heavy mathematical machinery.

Thus, our approach is suitable for introductory courses in solid state physics and materials science.
# 2023 Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

The band theory of solids introduced by Felix Bloch paved
the way to understand electron motion in crystals and the
occurrence of allowed bands and forbidden gaps in the energy
spectrum.1 Shortly after Bloch’s theory appeared, Ralph
Kronig and William Penney considered a one-dimensional
model of a periodic potential to describe the electron dynam-
ics in an idealized crystal.2 In its simplest form, the
Kronig–Penney model corresponds to the Schr€odinger equa-
tion for an electron moving in a periodic array of d-function
potentials. The resulting band structure is obtained exactly
without requiring extensive computations, so it is often used
in introductory textbooks to expose students to the main ideas
behind the band theory of crystalline solids.3–13

However, disordered solids and amorphous materials are
beyond the scope of introductory courses, because their con-
stituent atoms are not arranged in a periodic manner, so
Bloch’s theory is not applicable. In his celebrated paper
“Absence of diffusion in certain random lattices,” Anderson
tackled the problem of an electron in a three-dimensional
random lattice.14 Anderson established that the spatial fluctu-
ations imposed on the wave function by the random potential
lead to its localization when disorder exceeds a critical mag-
nitude (see Ref. 15 for a comprehensive review). This phe-
nomenon was named Anderson localization and led to his
Nobel Prize in Physics in 1977 for fundamental theoretical
investigations of the electronic structure of magnetic and dis-
ordered systems. Although a general overview of Anderson
localization can be introduced to undergraduate students
with the aid of simple reasoning and without sophisticated
mathematical tools (see, e.g., Ref. 16 and references therein),
the topic of electron states in noncrystalline solids is usually
omitted from solid state physics courses because of its obvi-
ous complexity.

Anderson localization may occur when disorder enters via
a random spatial distribution of elastic scattering sites.15 The
tight-binding approximation can account for such a scenario
by assuming that the atomic levels vary randomly from
site to site of the atomic lattice (see Ref. 16 for a brief intro-
duction to the tight-binding approximation in the context of

Anderson localization). Material systems where this model
applies include metal alloys, such as CuNi and AgPd, and
molecular systems. The scattering approach is the usual start-
ing point for studying the average properties of the energy
spectrum. In general, though, the configurationally averaged
spectral properties cannot be calculated exactly and various
approximations with different degrees of sophistication are
employed. Among them, the coherent potential approxima-
tion (CPA) stands out because it interpolates properly
between weak and strong scattering limits.17 While several
advanced textbooks in solid state physics provide thorough
discussion of the CPA,11,18,19 introductory textbooks
addressing this approach are scarce20 because advanced
knowledge of a scattering theory is needed.17

In this paper, we bridge the gap between introductory and
advanced textbooks by considering a one-dimensional (1D)
model of a random binary alloy within the tight-binding
approach. Disorder in 1D systems has its own peculiarities
not shared by 3D systems. For instance, in 1D any amount of
disorder results in the spatial localization of electrons,
although the spatial extent of the wave function can be larger
than the system size for weak disorder. This behavior is
rather independent of the model of disorder (compositional
or positional) and the distribution function of the random
variables of the model (binary, uniform, Gaussian). So, in
spite of the high impact of disorder, 1D systems are easier to
study than their 3D counterparts.

In the CPA, the average electron properties of the disor-
dered (non-periodic) solid are tackled by replacing the actual
atomic random potential by one that is energy-dependent
and the same at all lattice sites, usually referred to as the
coherent potential in the literature.17 The resulting effective
medium is periodic with the same average properties as the
non-periodic solid. In our approach, the coherent potential is
obtained in a self-consistent way by means of the well-
known transfer matrix method (TMM).21,22 We demonstrate
that the average density of states can be calculated without
relying on advanced mathematical tools. Remarkably, the
coherent potential obtained in this way turns out to be the
same as the standard CPA result obtained by means of more
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complicated mathematical tools (Green’s functions
method).17 Therefore, our approach could be of interest to
solid state physics instructors and students as it provides
them with all necessary tools to understand advanced text-
books17–19 and articles23–25 dealing with the electronic struc-
ture of disordered materials.

II. ELECTRON STATES IN A 1D SOLID

Our starting point is the Schr€odinger equation for a tightly
bound electron in a 1D solid, assuming that only a single
atomic orbital is relevant for the problem at hand.5 The
amplitude wn of the electron wave function at the nth atom
of the lattice satisfies the equation of motion (see, e.g., Ref.
16 for further details)

ðE� enÞwn � Jwnþ1 � Jwn�1 ¼ 0: (1)

Here, E is the electron energy, en is the energy of the atomic
orbital of the nth atom, and J is the hopping (or tunneling)
energy, which will be taken positive without loss of general-
ity. The last two terms of Eq. (1) are related to the overlap of
the wave functions of adjacent atoms.

A. 1D periodic monoatomic solid

Equation (1) is exactly solvable when the atomic levels
are independent of n (en � �e), because the lattice is periodic
and Bloch’s theorem holds. The amplitude of the wave func-
tion is, therefore, expressed as wn ¼ A exp ðikanÞ, where k is
the wave number, A is a normalization constant, and a is the
lattice parameter. Inserting the Bloch wave ansatz into the
equation of motion (1), we obtain the dispersion relation,

E0ðkÞ ¼ �e þ 2J cos ka; (2)

where the subscript 0 refers to the periodic lattice. Here, k
lies within the first Brillouin zone, �p=a < k � p=a.
Ignoring for simplicity the double degeneracy of electron
states due to spin, the corresponding density of states per
unit length (DOS) is q0ðE;�eÞ ¼ ð1=LÞ

P
kdðE� E0ðkÞÞ,

where L¼Na is the length of the 1D solid with N atoms.
Converting the summation into an integration over the first
Brillouin zone, the DOS inside the band is

q0ðE;�eÞ ¼
1

2p

ðp=a

�p=a

dðE� E0ðkÞÞ dk

¼ 1

p

ð0

�p=a

dðE� E0ðkÞÞ dk; (3a)

where we used E0ðkÞ ¼ E0ð�kÞ. After performing a change
of variables, the DOS is

q0ðE;�eÞ ¼
1

p

ð�eþ2J

�e�2J

dðE� E0ðkÞÞ
dk

dE0ðkÞ
dE0ðkÞ

¼ 1

p

���� dk

dE0ðkÞ

����
E0ðkÞ¼E

(3b)

and vanishes outside the band. The DOS is of paramount
importance in solid state physics since it is directly related to
some important phenomena such as electrical conductivity in
scanning tunneling microscopy, potential screening by

electrons in metals, and optical absorption in semiconduc-
tors. Finally, recalling the dispersion relation (2), we obtain
the DOS in the 1D periodic solid

q0ðE;�eÞ ¼
1

pa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 � ðE� �eÞ2

q (4)

within the energy band. Notice that the DOS is singular at
the two band-edges (E ¼ �e62J) due to the 1D nature of the
periodic lattice.

B. 1D periodic binary solid

We now consider a slightly more complicated situation
when there are two different atoms per unit cell, with energy
levels eA and eB. Since the periodicity of the lattice is pre-
served and Bloch’s theorem still holds, Eq. (1) is exactly
solvable. The energy dispersion of the 1D periodic binary
solid is found to be

E6ðkÞ ¼
eA þ eB

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeA � eBÞ2

4
þ 4J2 cos2ðka=2Þ

s
; (5)

and, recalling Eq. (3), the associated DOS is

q0ðE; eA; eBÞ ¼
ðDEA þ DEBÞ=paffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4J2 � DEADEBÞDEADEB

p ; (6)

where DEA ¼ E� eA; DEB ¼ E� eB, and a remains the lat-
tice parameter. The DOS vanishes outside the bands, namely,
when the denominator becomes imaginary.

Figure 1 displays the DOS as a function of energy,
expressed in units of J, according to Eq. (6) when eA ¼ 0:6 J
and eB ¼ 0. We observe the occurrence of a gap separating
two allowed energy bands and the DOS divergence at the four
band edges. The gap appears for any nonzero value of the dif-
ference eA � eB, i.e., when the solid is truly diatomic. The
magnitude of the gap increases with increasing jeA � eBj.

C. 1D disordered binary alloy

In a disordered lattice, on-site energies en are different at
different atomic positions. In addition, we will focus on
binary disorder and assume that en can take on two values,
eA and eB, at random with probability c and 1� c, respec-
tively. Hence, the probability distribution of this model of
the 1D binary alloy is

PðenÞ ¼ cdðen � eAÞ þ ð1� cÞdðen � eBÞ: (7a)

The configuration average over the probability distribution
of any arbitrary function f ðenÞ of the random variables en is
simply given as

hf ðenÞiav ¼
ð

f ðenÞPðenÞ den

¼ cf ðeAÞ þ ð1� cÞf ðeBÞ: (7b)

It should be mentioned that other probability distributions,
such as Gaussian and uniform, can be handled in a similar
way but we focus on binary disorder for the sake of concrete-
ness. Figure 2(a) shows a schematic view of the 1D binary
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alloy, where the sequence of atomic levels with energy eA or
eB is random.

For a given configuration of disorder, the equation of
motion (1) can be solved by numerical diagonalization of a
tridiagonal matrix, provided that the number of atoms N in
the 1D binary alloy is not too large. Once the eigenenergies
E� are known, the DOS is obtained as follows:

qðEÞ ¼
�

1

L

X
�

dðE� E�Þ
�

av

; (8)

where � in the sum runs over all eigenenergies. Here, as it is
a disordered chain, there is a non-zero probability to find a
region with a sufficiently long string of atoms of the same
type. This means that the alloy DOS will extend over the
same range as the energy bands of a periodic array of A
atoms and a periodic array of B atoms.26 This kind of brute-
force attack was completely undoable in the early days of
the electron theory of solids. It was then suggested that the
electronic structure of a disordered binary alloy might be
tackled by placing on each site of the atomic lattice an effec-
tive, or coherent, potential R [see Fig. 2(b)]. With this

assumption, the translational symmetry is restored since the
effective medium would be periodic, and the DOS would be
given in Eq. (4) as q0ðE;RÞ. Therefore, the problem reduces
to finding R such that q0ðE;RÞ ¼ qðEÞ, where the latter is
given in Eq. (8).

D. Virtual crystal approximation

For a first approximation of R, assume that the potential is
given by the following average:

RVCA � heniav ¼ ceA þ ð1� cÞeB: (9)

This is known as the virtual crystal approximation (VCA)
(see, e.g., Refs. 27 and 28). The VCA is a reasonably good
description only if eA ’ eB, the weak disorder regime,
because the perturbed wave function is extended so the
electron sees the average perturbation. More elaborate self-
consistent approximations have a much wider range of valid-
ity, as we will show below.

E. Coherent potential approximation

Among other well-established approaches, the CPA is an
excellent and accurate alternative to purely numerical calcu-
lations of the DOS.29,30 The essential physical idea behind
the CPA is to find the (yet unknown) coherent potential that
defines the effective periodic medium, shown in Fig. 2(b),
with the aid of some reasonable assumptions. This approxi-
mation is generally regarded as a single-site theory since
electron scattering from clusters of impurities is neglected.
Therefore, the CPA starts by removing one (and only one)
atomic level R of the effective medium and in its place put-
ting an actual atomic level eA or eB [see Fig. 2(c)]. The
coherent potential R is determined by demanding that after
the replacement by eA or eB, there is no further scattering on
average. In other words, the CPA takes into account all scat-
tering events with the same impurity and neglects scattering
events with two or more impurities. The rigorous formula-
tion of this condition requires advanced knowledge of a scat-
tering theory beyond the introductory courses in solid state
physics, as already discussed in the introduction. After com-
plicated but otherwise straightforward calculations, the cen-
tral equation of the CPA is found to be17,28

*
en � R

1þ iðen � RÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 � ðE� RÞ2

q
+

av

¼ 0; (10)

where the configuration average is performed with the aid of
Eq. (7b). This is an implicit equation for the coherent poten-
tial R ¼ RðEÞ that will be discussed in more detail later. In
general, the coherent potential is complex and, according to
the scattering theory, the real part represents an overall
energy shift while the imaginary part is identified with the
level broadening [see Eq. (14)].

We now present a simple methodology to arrive at the
CPA equation, which preserves its underlying ideas with no
need of the advanced scattering theory of quantum particles.
Our approach relies on the well-known and easy-to-use
transfer matrix method for 1D lattice problems.21,22 We start
by rewriting Eq. (1) in the matrix form

Fig. 1. Density of states (DOS) of a 1D periodic binary solid with on-site

energies eA ¼ 0:6J and eB ¼ 0 as a function of energy.

Fig. 2. (Color online) Pictorial representation of the calculation of the coher-

ent potential. The disordered lattice is schematized in (a) and the effective

medium is represented in (b). (c) The coherent potential R is determined from

the condition that no further scattering happens on average when a single site

of the effective medium is replaced by a site of the disordered lattice.
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wnþ1

wn

 !
¼ PðenÞ

wn

wn�1

 !
; (11a)

where

PðenÞ ¼
ðE� enÞ=J �1

1 0

 !
(11b)

is known as the promotion matrix at a lattice position with
on-site energy en. The case of transmission when a single
atomic level of the effective medium (say at site m) is
replaced by either eA or eB, as depicted in Fig. 2(c), can be
solved straightforwardly. We relate the amplitudes of the
wave function at both sides of site m by iterating Eq. (11a)

wmþ2

wmþ1

 !
¼ TðemÞ

wm�1

wm�2

 !
; (12a)

where TðemÞ � PðRÞPðemÞPðRÞ is the transfer matrix of the
scattering region formed by sites m – 1, m, and mþ 1. Notice
that sites m – 1 and mþ 1 are different from the other sites of
the effective medium, in the sense that one of their two
nearest-neighbors does not have an energy level R but rather
eA or eB. Hence, sites m – 1 and mþ 1 need to be regarded as
part of the scattering region as well. After performing the
matrix multiplication, the elements of the transfer matrix are
found to be

T11ðemÞ ¼
1

J3
ðE� RÞ2ðE� emÞ �

2

J
ðE� RÞ ;

T12ðemÞ ¼ 1� 1

J2
ðE� RÞðE� emÞ ;

T21ðemÞ ¼ �T12 em;

T22ðemÞ ¼ �
1

J
ðE� emÞ: (12b)

The scattering region is connected to two semi-infinite lat-
tices with on-site energy R. An electron incident from the
left onto the scattering region can be reflected back to the
left or transmitted to the right. Therefore, the amplitude of
the total wave function is written as

wn ¼
eikna þ rne�ikna; n ¼ m� 1;m� 2;…

tneikna; n ¼ mþ 1;mþ 2;…;

(
(13)

with r and t being the reflection and transmission amplitudes,
respectively. Here, k> 0 to ensure that the electron impinges
from the left onto the scattering region. It must be borne in
mind that the left and right semi-infinite lattices are periodic
and, consequently, k is related to the electron energy in the
effective medium as (see Sec. II A)

EeffðkÞ ¼ Rþ 2J cos ka: (14)

Inserting Eq. (13) in Eq. (12a) allows us to obtain the reflec-
tion amplitude as (see Appendix A)

rm ¼
T11ðemÞ � T22ðemÞ þ T12ðemÞe�ika � T21ðemÞeika

T21ðemÞ � T12ðemÞ þ T22ðemÞeika � T11ðemÞe�ika

� eikað2m�3Þ: (15)

Finally, recalling Eq. (12b) and imposing the CPA condition
regarding the absence of scattering on average, namely,
hrniav ¼ 0 where the average is given in Eq. (7b), we get�

em � R
1þ iðem � RÞ=ð2J sin kaÞ

�
av

¼ 0; (16)

when 0 < k � p=a. In conclusion, by virtue of Eq. (14), we
find the same CPA equation (10) for the coherent potential
using only the elementary scattering theory.

III. RESULTS

In order to simplify the expressions, we set the origin of
energy at the energy level of B atoms, eB ¼ 0. Performing
the configurational average in Eq. (10) or Eq. (16) with the
probability distribution (7a), and rearranging terms, the CPA
equation can be cast in the following form:

R ¼ ceA

1þ i ðeA � RÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2 � ðE� RÞ2
q : (17)

The CPA equation (17) is an implicit equation for R which
must be solved numerically for each energy of interest.28 In
general, the coherent potential R will be complex and,
according to Eq. (14), there exists the possibility of obtaining
complex energies E(k) for real values of k. In cases like this,
ImðEeffðkÞÞ < 0 gives the width associated with the state
having energy ReðEeffðkÞÞ.19 Level broadening in disordered
solids can also be understood from the perturbation theory:
If the disordered potential is regarded as a perturbation, then
it will mix Bloch states with different crystal wave number
k. The variance of the perturbed levels turns out to be non-
zero and can be identified with a broadening of the levels
(see Ref. 16 for further details).

The solution of Eq. (17) is particularly simple in the limit-
ing cases of strong and weak disorder. We start by consider-
ing these two limiting situations and compare the predicted
DOS with the results obtained by direct diagonalization of
the tridiagonal matrix Hamiltonian with rigid boundary con-
ditions (w0 ¼ wNþ1 ¼ 0).

A. Strong disorder

Disorder is regarded as strong when jeAj is large compared
to the bandwidth 4J. In this limit, we can make the approxi-

mation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 � ðE� RÞ2

q
� iðR� EÞ in Eq. (17), resulting

in a real-valued coherent potential R. Inserting the obtained
coherent potential in Eq. (14) leads to the following disper-
sion relation:

Es
6ðkÞ ¼ ceA þ cðkÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðkÞ þ cð1� cÞe2

A

q
;

cðkÞ � J cos kaþ ð1=2� cÞeA; (18)

where the superscript s indicates the strong disorder limit.
Therefore, the energy spectrum splits into two bands in this
limiting case. Once the dispersion relation is obtained, the
DOS is calculated from Eq. (3) when E0ðkÞ is replaced by
Es

6ðkÞ. The solid line in Fig. 3 shows the obtained DOS for
c¼ 0.5 and eA ¼ 6J. The singularities of the DOS at the
edges of the two bands are clearly observed in spite of the
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randomness of the system, a fact that it is deeply related to
the absence of an imaginary part in the coherent potential
(recall that the imaginary part gives the width of the energy
level).

The shaded histogram in Fig. 3 displays the exact DOS
obtained after numerical diagonalization of the tridiagonal
Hamiltonian for a 1D lattice with N¼ 10 000 sites (see
Appendix B). The exact DOS is an average over 500 config-
urations with the same values of c and eA. Comparing the
two plots, the approximate dispersion relation (18) is able to
predict the splitting of the band, but the bandwidth is under-
estimated, leading to an overestimation of the bandgap. This
inaccuracy is attributed to the approximations made to
arrive at (18). To support this claim, the dashed line in Fig.
3 shows the CPA result after solving Eq. (17) exactly.
Solution to this equation will be discussed later in this sec-
tion. Clearly, the CPA result provides excellent values for
the bandwidths and bandgap even in the strong disorder
regime. However, it fails to take into account the sharp
peaks observed in the numerical DOS that persist upon
increasing the number of realizations of disorder. This fail-
ure is usually attributed to the single-site nature of the CPA
[see Fig. 2(c)]. In other words, the CPA neglects the statisti-
cal fluctuations of the local environment of atoms in the
alloy. Extensions of the CPA to deal with clusters of atoms
have been developed, but they are beyond the scope of this
work.28

B. Weak disorder

The weak disorder regime is established when jeAj is
smaller than the bandwidth 4J. In this situation, R is
expected not to differ much from RVCA ¼ ceA. Replacing R
by ceA in the right hand side of Eq. (17) leads to the follow-
ing approximate dispersion relation:

EeffðkÞ ¼ 2J cos ka

þ ceA

1þ i ð1� cÞeA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 � ðEeffðkÞ � ceAÞ2

q ;

(19)

which is easily solved to obtain EeffðkÞ. It turns out to be
complex, signaling the occurrence of a finite level width.
Therefore, the d-function in Eq. (3) needs to be replaced by a
Lorentzian

dðE�EeffðkÞÞ!
1

p
�Im EeffðkÞ½ �

E�Re EeffðkÞ½ �
� �2þfIm EeffðkÞ½ �g2

:

This replacement yields the proper limit in the absence
of disorder, when the imaginary part of the coherent poten-
tial vanishes, according to the well-known result dðxÞ
¼ limg!0 ðg=pÞ=ðx2 þ g2Þ.

Figure 4 shows the DOS calculated using Eq. (19) for
c¼ 0.5 and eA ¼ 0:6J. This is compared to the exact DOS
calculated by direct diagonalization of the tridiagonal
Hamiltonian, shown by the filled curve. Although the
approximate DOS is finite at the two band edges, it slightly
overestimates the exact result. More accurate results are
achieved by solving the exact CPA equation (17), shown by
the dashed line in Fig. 4. Notice the excellent agreement
between this and the numerical result in the weak disorder
limit. It is worth mentioning that the singularities of the DOS
at the band edges of the periodic solid observed in Fig. 1 are
smeared out by disorder. This is a general trend in random
alloys since substitutional disorder leads to the erosion of the
van Hove singularities (see Ref. 24 for a discussion of this
effect in disordered molecular crystals).

Fig. 3. (Color online) DOS in the strong disorder regime for c¼ 0.5 and

eA ¼ 6 J. Solid line corresponds to the approximate dispersion relation (18).

Filled curve displays the exact result after numerical diagonalization of the

tridiagonal Hamiltonian for a 1D lattice with N¼ 10 000, averaged over

500 realizations of disorder. Dashed line shows the CPA result after

solving (17).

Fig. 4. (Color online) DOS in the weak disorder regime for c¼ 0.5 and

eA ¼ 0:6 J. Solid line corresponds to the approximate dispersion relation

(19). Filled curve displays the exact result after numerical diagonalization of

the tridiagonal Hamiltonian for a 1D lattice with N¼ 10 000, averaged

over 500 realizations of disorder. Dashed line shows the CPA result after

solving (17).
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C. Solution of CPA equation

Equation (17) can be squared to render the following cubic
equation for the coherent potential R:

A0R
3 þ A1R

2 þ A2Rþ A3 ¼ 0;

A0 � 2E� 2ð1� cÞeA;

A1 � 4J2 � E2 þ 1� c2ð Þe2
A � 4ceAE;

A2 � 2ceA ceAE� 4J2 þ E2
� 	

;

A3 � c2e2
A 4J2 � E2ð Þ: (20)

This cubic equation can be solved for RðEÞ as a function of
the two parameters c and eA. Once it is solved, the DOS is
obtained as explained above.

Figure 5 shows the DOS for different magnitudes of disor-
der eA when c¼ 0.5. The single band observed in the weak
disorder limit splits into two bands upon increasing the mag-
nitude of disorder. The onset of band splitting occurs at
eA � 4 J. Gap opening by disorder has a strong impact on the
optical properties of materials systems, as discussed by
Onodera and Toyozawa in 1968, who showed that the behav-
ior of the absorption coefficient is rather complex.31 In addi-
tion, if the Fermi level moves through the gap that develops
with increasing disorder, then a metal/insulator transition
occurs.

Finally, Fig. 6 shows the DOS for different concentrations
c when the magnitudes of disorder are eA ¼ 2J. We observe
that the single band limit is restored upon increasing c above
0.2 for this magnitude of disorder. This is consistent with
what is described in Secs. II B and II C, since as c increases
so does the probability of finding a sufficiently long chain of
atoms with the same energy eA or eB.

IV. CONCLUSIONS

Electron motion in disordered solids has been an active
field of research for the past 60 years. However, the absence
of translational symmetry makes theoretical analysis highly

complex, and there are few introductory-level treatments of
important disorder-related phenomena such as localization
and metal-insulator transitions. In particular, the CPA is usu-
ally derived using advanced mathematical tools such as
Green’s functions and is typically beyond the scope of
undergraduate coursework in solid state physics. Our
approach to the CPA, based on the transfer matrix method,
arrives at the same results without the heavy mathematical
overload. This makes the treatment of disordered phenomena
accessible to undergraduate or early graduate students.
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APPENDIX A: CALCULATION OF THE

REFLECTION COEFFICIENT

After inserting Eq. (13) into Eq. (12a) and dividing by
eikaðm�1Þ, one gets

tei3ka ¼ M�1 ðemÞ þ re�2ikaðm�1ÞMþ1 ðemÞ;
tei2ka ¼ M�2 ðemÞ þ re�2ikaðm�1ÞMþ2 ðemÞ; (A1)

where M6
i ðemÞ ¼ Ti1ðemÞ þ Ti2ðemÞe6ika. Dividing one equa-

tion by the other and solving for r yields
Fig. 5. (Color online) DOS for a 1D binary alloy as a function of the magni-

tude of disorder eA when c¼ 0.5.

Fig. 6. (Color online) DOS for a 1D binary alloy as a function of the concen-

tration c when eA ¼ 2 J.

817 Am. J. Phys., Vol. 91, No. 10, October 2023 Mart�ınez, Baba, and Dom�ınguez-Adame 817

 22 Septem
ber 2023 07:46:52



rm ¼
M�1 ðemÞ �M�2 ðemÞeika

Mþ2 ðemÞeika �Mþ1 ðemÞ
e2ikaðm�1Þ; (A2)

which can be easily converted into Eq. (15) by recalling the
definition of M6

i ðemÞ.

APPENDIX B: NUMERIC SIMULATION CODE

The code has been written using Python as the program-
ming language. Therefore, we need to import the packages
to be used

import numpy as np
from scipy.linalg import eigvalsh_tridiagonal

Then, we will define the diagonal of the Hamiltonian,
which will be filled with randomly on-site energies following
the probability distribution (7a). The system will have N
sites, the on-site energies will be eps_a and eps_b, and the
hopping will be J.

def r_hamiltonian(N, c, eps_a, eps_b, J):
diag¼[]
for i in range(N):
rn¼np.random.rand()
if rn > c:
diag.append(eps_b)

else:
diag.append(eps_a)

Once we have the diagonal elements defined, we will pop-
ulate the off-diagonal matrix elements and then calculate the
eigenvalues. They will be sorted in order to make the config-
urational average in the next step.

RE¼np.sort(eigvalsh_tridiagonal(diag,
J*np.ones(N-1)))

return RE

Now, we will take the average of N_prom realizations of
disorder.

def Prom(N_prom, N, c, eps_a, eps_b, J):
M¼[r_hamiltonian(N, c, eps_a, eps_b, J)
for i , in ,!range(N_prom)]
eig¼np.moveaxis(M,0,-1)
E¼np.mean(eig,1)
return E

Finally, to find the numerical DOS from the disorder
chain, we need to make an histogram with the averaged
energies.
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