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Abstract
Several IV–VI semiconductor compounds made of heavy atoms, such as Pb1−xSnxTe, may undergo band-inversion at the L point of

the Brillouin zone upon variation of their chemical composition. This inversion gives rise to topologically distinct phases, charac-

terized by a change in a topological invariant. In the framework of the k·p theory, band-inversion can be viewed as a change of sign

of the fundamental gap. A two-band model within the envelope-function approximation predicts the appearance of midgap inter-

face states with Dirac cone dispersions in band-inverted junctions, namely, when the gap changes sign along the growth direction.

We present a thorough study of these interface electron states in the presence of crossed electric and magnetic fields, the electric

field being applied along the growth direction of a band-inverted junction. We show that the Dirac cone is robust and persists even

if the fields are strong. In addition, we point out that Landau levels of electron states lying in the semiconductor bands can be

tailored by the electric field. Tunable devices are thus likely to be realizable, exploiting the properties studied herein.
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Introduction
In 1982, Thouless et al. [1] made a connection between the

quantum Hall effect and a topological invariant, the so-called

first Chern number [2]. The fact that a quantum Hall system

was insulating in the bulk but had a quantized conductivity on

the edge could be related to the non-trivial topology of the band

structure. In 2006, topology came up to stage once again with

the theoretical prediction by Bernevig et al. [3] of a topological

insulating behaviour in a HgTe/CdTe quantum well. The differ-

ence between the latter and the quantum Hall system lies in the

fact that the quantum well required no magnetic field at all, but

just relativistic corrections (Darwin and mass–velocity

interactions) large enough so as to invert the Γ6 and Γ8

bands [4]. The HgTe/CdTe quantum well possesses non-trivial

edge states when a certain width is exceeded. In 2007,

experiments verified this remarkable result and established the

existence of the quantum spin Hall effect [5]. However, no clear

signatures of conductance quantization have been observed yet

[6,7].

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
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Besides II–VI compound semiconductors, such as HgTe, IV–VI

semiconductors support non-trivial edges states as well [8]. In

this regard, Dziawa et al. reported evidence of topological crys-

talline insulator states in Pb1−xSnxSe [9]. High-resolution scan-

ning tunneling microscopy studies of these topological

crystalline insulators provided strong evidence of the coexis-

tence of massless Dirac fermions, protected by crystal

symmetry, with massive Dirac fermions consistent with crystal-

symmetry breaking [10]. Recently, these results have received

further support with the aid of Dirac Landau level spectroscopy

[11,12].

Band-inverted structures were already studied back in the

1980’s and 1990’s under the name of band-inverted junctions,

in which the fundamental gap has opposite sign on each semi-

conductor. A salient feature is the existence of interface states

lying within the gap, provided that the two gaps overlap [13-

17]. These states are protected by symmetry, and are responsi-

ble for the conducting properties of the surface. In IV–VI

heterojunctions, such as PbTe/SnTe, interface states are accu-

rately described by means of a two-band model using the effec-

tive k·p approximation [18,19]. The equation governing the

conduction- and valence-band envelope functions reduces to a

Dirac-like equation after neglecting far-band corrections. In

view of this analogy, exact solutions can be then straightfor-

wardly found by means of supersymmetric [16] or Green’s

function approaches [20]. In the context of symmetry-protected

topological phases, our model can be applied not only to topo-

logical crystalline insulators, like the ones mentioned above [8],

but also to more general three-dimensional topological insula-

tors, such as Bi2Se3, in contact with a trivial insulator [21,22].

In the former case, mirror symmetry makes it possible to define

mirror Chern numbers, which determine the topological crys-

talline phase [8]. In the latter, time-reversal symmetry, parity

and particle–hole symmetry allow us to define a topological

index given by the sign of the Dirac mass [21].

In 1994, Agassi studied the case of a band-inverted junction

with a magnetic field applied parallel to the junction [23]. This

author showed that the Dirac point remains robust upon the ap-

plication of a magnetic field of arbitrary strengths and that the

Landau levels in the continuum split for non-zero values of the

in-plane momentum in the direction perpendicular to the mag-

netic field. By means of the modern theory of symmetry-pro-

tected topological phases, the protection of the Dirac point can

be understood in the case of topological crystalline insulators

from the fact that a magnetic field perpendicular to a mirror

plane renders a system that is still symmetric about that plane

[8]. This is not the case in a magnetic field parallel to the mir-

ror plane, where the Dirac cone turns into the usual relativistic

Landau levels [13,15,24]. Going back to the parallel magnetic

field, Agassi demonstrated that for large values of this in-plane

momentum, the states evolve to the bulk Landau states and the

midgap state becomes the zero Landau level, usual of these

Dirac systems. The reason is that the in-plane momentum per-

pendicular to the magnetic field is proportional to the position

of the Landau orbits. If it becomes very large and the magnetic

length is at the same time small, which happens for large mag-

netic fields, then the orbits do not intersect the junction and they

might not notice that boundary. Hence, the case of most

interest is in the vicinity of low in-plane momentum perpendic-

ular to the field, where the states differ the most from the

Landau levels of the bulk and we can see the effects of the

interface.

In this same topic of external fields applied to band-inverted

junctions, we have recently studied band-inverted junctions

based on IV–VI compounds using a two-band model when an

electric field is applied along the growth direction [25]. We

have demonstrated that the Dirac cone of midgap states is

robust against moderate values of the electric field but Fermi’s

velocity decreases quadratically with the applied field. The aim

of this paper is to characterize electron states in band-inverted

junctions using a two-band model in the presence of crossed

magnetic and electric fields, the former parallel to the junction,

the latter perpendicular to it. We show that the Dirac cone of

midgap states arising in the single-junction configuration is

robust against crossed electric and magnetic fields. In addition,

Landau levels of electron states lying in the semiconductor

bands can be tailored by the electric field. Finally, the elec-

tronic structure of band-inverted junctions when the magnetic

field is applied along the growth direction, parallel to the elec-

tric field, will also be briefly discussed for comparison.

Theoretical model
We consider heterojunctions of IV–VI compound semiconduc-

tors, such as Pb1−xSnxTe and Pb1−xSnxSe. The latter are known

to shift from being semiconductors to topological crystalline

insulators due to the band inversion at the L points of the Bril-

louin zone as the Sn fraction increases [8,26,27]. In order to

keep the algebra as simple as possible, we restrict ourselves to

the symmetric heterojunction with same-sized and aligned gaps,

as depicted in Figure 1a. This assumption simplifies the calcula-

tions while keeping the underlying physics [28]. Thus, a single

and abrupt interface presents the following profile for the mag-

nitude of the gap

(1)

where sgn(z) = |z|/z is the sign function. Here the Z-axis is

parallel to the growth direction [111].
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Figure 1: (a)  and  band-edge profile of an abrupt band-inverted
junction with aligned and same-sized gaps, located at the XY-plane,
and b) schematic view of the applied electric and magnetic fields.

The envelope functions of the electron states near the band

extrema  and  in IV–VI compounds are determined from

the following Dirac-like Hamiltonian [15,16,19]

(2)

Here α = (αx, αy, αz) and β denote the usual 4 × 4 Dirac

matrices,  and , σi and  being the

Pauli matrices and n × n identity matrix, respectively. More-

over, v is an interband matrix element having dimensions of

velocity and it is assumed scalar, corresponding to isotropic

bands around the L point. It is worth mentioning that the bands

of IV–VI compounds around the L points are actually

anisotropic. Nevertheless, this anisotropy can be absorbed in the

definition of the dimensionless parameters defined below. That

is, it is possible to consider a direction-dependent velocity, but

it will not change the results shown below, except for a propor-

tionality constant in the definition of the dimensionless in-plane

momenta (see [19,28] for further details). In addition, we focus

on states close to one of the L points of the Brillouin zone [8]

and neglect other valleys in what follows since midgap states

are stable against gap opening by valley mixing. Also notice

that only linear momentum terms are taken into account in

Equation 2 but quadratic momentum terms could have an

impact of the electronic levels [29,30]. However, the two-band

model Hamiltonian (Equation 2) successfully describes the

hybridization of interface states in band-inverted quantum wells

[31], in perfect agreement with more elaborated models includ-

ing quadratic momentum terms [30]. The Hamiltonian (Equa-

tion 2) acts upon the envelope function χ(r), which is a four-

component vector composed of the two-component spinors

χ+(r) and χ−(r) belonging to the  and  bands. The inter-

face momentum is conserved and the envelope function can be

expressed as , where it is understood

that the subscript “ ” in a vector indicates the nullification of

its z-component. In the case of aligned and same-sized

gaps, it is found that , with  and

the interface dispersion relation is a single Dirac cone

, where the origin of energy is taken at the

center of the gaps [20]. v is the group velocity at the Fermi level

in undoped samples and it will be referred to as Fermi velocity

hereafter.

Electron states under crossed electric
and magnetic fields
We now turn to the electronic states of a single band-inverted

junction exposed to a perpendicular electric field  and a

parallel magnetic field , as shown schematically in

Figure 1b. By choosing the Landau gauge, the vector potential

is given as .

The electrostatic potential eFz and the vector potential A(z)

only depend on the z-coordinate. Therefore,  is a con-

stant of motion and the envelope function can still be factorized

to the form . Now the longitudinal

envelope function  satisfies the following Dirac equation:

(3)

where  is given by Equation 2. To address this problem we

shall follow the Feynman–Gell-Mann ansatz [32] and define a

new four-component vector ψ(z) as

(4)

It is convenient to introduce the following dimensionless quan-

tities , ξ = z/d, ε = E/Δ, f = eFd/Δ, and .

Notice that f/2 is the ratio between the electric potential drop

across the spatial extent of the midgap states  in the

absence of fields and the magnitude of the fundamental gap 2Δ.

Similarly, b is the square of the ratio between d and the magnet-

ic length . Hereafter we shall consider b > f ≥ 0 for

reasons that will become clear shortly. Let us define

(5)

where μ = (b2 − f 2)1/4 is real. Then, inserting the ansatz (Equa-

tion 4) in Equation 3 and taking into account Equation 5, we get
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(6)

where s0 ≡ s(ξ = 0). Here  and  are 4 × 4 matrices given

by

(7)

Let us diagonalize the left-hand side of the equation by intro-

ducing a unitary matrix U such that . Doing so

and defining  and  we obtain

(8)

In order to solve Equation 8 we shall use the Green’s function

method. The solution to Equation 8 will be given by

(9)

where the retarded Green’s function G(s,s′) satisfies

(10)

and G(s,s′)→0 as |s|,|s|′→∞. Note that G(s,s′) is continuous on

the line s = s′. Equation 9 can be particularized for s = s0,

leading to a homogeneous system of equations with non-trivial

solutions existing for energies satisfying the vanishing of the

determinant

(11)

Since G(s,s′) can be considered as the inverse of the operator

that acts upon it and the latter is diagonal, we may consider

G(s,s′) to be block diagonal. Hence,

(12)

where  is the 2 × 2 null matrix and the scalar functions

g±(s,s′) satisfy

(13)

with . Since s is real because we have chosen μ to

be so, then s2 > 0 and this equation corresponds to a harmonic

oscillator. Notice that this would not be the case if μ were imag-

inary as in that case s2 < 0 and we would not have the positive

parabola required for a harmonic oscillator. The solution to this

problem is known to be [33,34]

(14)

where Γ(z) is the Gamma function, Dγ(z) is the parabolic-

cylinder function, s> = max(s,s′) and s< = min(s,s′). Now that

we have G(s,s′), it is straightforward to obtain from Equation 11

that g+(s0,s0)g−(s0,s0) = μ2/2. Equivalently

(15)

Equation 15 determines the dispersion relation ε(κ) of midgap

interface states as well as Landau levels lying in the semicon-

ductor bands. It reduces to the result found by Agassi when the

electric field vanishes [23].

Results and Discussion
Energy levels in the absence of electric field
This section is added for completeness and essentially repro-

duces the results found by Agassi [23] for small values of κx.

However, we will be able to give approximate dispersion rela-

tions for the midgap state and the Landau levels that will

provide us with a clearer view of the effect of the magnetic field

in our case of interest. This section then corresponds to the f = 0

case, where approximate results can be obtained. In fact, these

results are exact when κx = 0, where s0 = 0. Let us explore this

last case. Using Γ(1 + z) = zΓ(z) and the Legendre duplication

formula , it is straightfor-

ward to obtain from Equation 15

(16)

There are now two possibilities, either the numerator goes to

zero or the denominator goes to infinity. If p < 0, it is neces-
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sary to have a numerator equal to zero, which amounts to

having,

(17)

This is nothing but a Dirac linear dispersion in the y-direction. It

is remarkable that the Dirac point remains robust for any

strength of b. Taking into account the definition of p, the case

where p < 0 corresponds to |ε| < 1 at κx = κy = 0, meaning that

these states lie within the gap.

Let us explore other possibilities. If p = 0, then both the numer-

ator and the denominator are finite, which implies that p = 0 is

not a solution. The other option where p > 0 is only achieved if

the denominator goes to infinity because the numerator is

always positive in this case. For this to happen, p must be a pos-

itive integer. The corresponding energies are the usual Landau

levels of a relativistic particle

(18)

There is no zero Landau level because the requirement of p > 0

implies |ε| > 1 at κx = κy = 0, that is, Landau levels exist outside

the gap. With this results in mind, we can now turn to the case

where κx ≠ 0, but s0→0. After some tedious algebra we arrive at

the following expression:

(19)

where

(20)

If s0 = 0 we obtain again Equation 16, corresponding to κx = 0.

Now if κx ≠ 0, then either the term in curly brackets is zero or

the prefactor multiplying this term is zero. As before, if the pre-

factor is zero then p is a positive integer. However, that would

imply two possible energies for each integer, but numerically

we will show briefly that this is not the case. Thus, we must

consider the term in curly brackets to be equal to zero. If we

consider b→0, but at the same time κx→0 sufficiently fast so

that s0→0, then it is not difficult to obtain for the states inside

the gap

(21)

whereas for the Landau levels we obtain to lowest order in κx

(22)

where c(n) results from the expansion around integer values of

p of η(p) + η−1(p) + 2 ≈ c(n)(p − n)−2. For instance, c(1) = 2/π,

c(2) = 1/π, c(3) = 3/2π,… Before we consider each case, it is

important to mention that the approximation of low b corre-

sponds to the range of interest in experiments since typically d

≈ 4.5 nm and as a result b = 0.5 corresponds to a very large

magnetic field of about 16 T.

Let us now consider each case separately. On the one hand,

Equation 21 corresponds to an elliptic cone and for b = 0 we

recover the original Dirac cone. It is not only remarkable, as we

mentioned above, that the Dirac point is robust, but also that the

shape of the dispersion relation remains a cone but slightly

widened in the x-direction, as shown in Figure 2. Hence, the

Fermi velocity becomes anisotropic and can actually be modu-

lated with the magnetic field. It is expected that the application

of an electric field will lead to further reduction of the Fermi

velocity [25]. We will prove later that this is actually the case.

Figure 2: Dirac cones with, b≠ 0, and without, b = 0, a magnetic field
applied. The original cone is distorted along the x-direction and the
Fermi velocity, i.e., the slope, becomes anisotropic.

In Figure 3a we show a comparison between the Fermi velocity

in the x-direction (recall that it does not change in the y-direc-

tion) given by the numerical evaluation of Equation 15 and the

approximation in Equation 21. The agreement is noteworthy for

low values of b.
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Figure 3: Comparison between exact and approximate results given
by (a) Equation 21 and (b) Equation 22. In panel (a) the Fermi velocity
along the x-direction, calculated as the slope of the dispersion relation,
is substantially reduced and the agreement between the exact and ap-
proximate results is noteworthy up to b ≤ 0.2. In panel (b), the Landau
level splitting in the x-direction is very well predicted even for b = 0.5,
as shown for the first level.

We can now focus on the Landau levels given by Equation 22.

As it can be seen, for non-zero values of κx, each Landau level

at κx = 0 splits into two Landau levels at κx ≠ 0 due to the occur-

rence of a “±”-sign inside the square root. The comparison for

the first Landau level, n = 1, between the approximate result

and the numerical calculations from Equation 15 are shown in

Figure 3b. In contrast to Figure 3a, there is still agreement be-

tween both approaches for a large field of b = 0.5.

Energy levels at finite electric field
Let us now bring our attention to the case of f ≠ 0. In contrast to

the case of f = 0, we have been unable to obtain explicit expres-

sions of the dispersion relation, but the numerics shows remark-

able results. Let us focus first on the midgap states. Since the

magnetic field did not erase the Dirac point and based on

known results of a band-inverted junction under an electric field

[25,28], it seems plausible to argue that the effect of the electric

field will be to enhance the reduction of the Fermi velocity in

the x-direction and to introduce a reduction in the y-direction as

well, leaving however the Dirac point untouched. This is indeed

what we observe and we show our results in Figure 4. The

insets show the Fermi velocity reduction as a function of the

electric field for a fixed value of b = 0.5. It is remarkable how

the Fermi velocity along the x-direction is substantially de-

creased in band-inverted junctions subject to crossed magnetic

and electric fields.

We may now turn to the evolution of the Landau levels as a

function of the electric field. For simplicity, we shall consider

only the first Landau level. It is illustrative to consider first the

evolution of the lowest point of the Landau bands, that is,

. If the electric field is zero, we already know what the

Figure 4: The additional effect of the electric field leads to a further
reduction of the Fermi velocity in the x-direction and to a reduction
along the y-direction as well. The Dirac point, however, remains
robust. The insets show the Fermi velocity reduction as a function the
electric field for a fixed magnetic field of b = 0.5.

energy will be from the discussion above. However, as we turn

on the electric field, a splitting similar to the one we had with κx

begins to develop. This splitting increases with electric field, up

to a point where it starts decreasing again as f approaches b. In

the limiting case where f→b, the splitting goes to zero, as we

show in Figure 5 for b = 0.5.

Figure 5: Splitting of the Landau levels at  and b = 0.5 as a
function of the electric field. It is important to note that the Landau
levels move below the band edge due to the bending by the electric
field (see main text for details).

In Figure 5 it may be surprising to see that the Landau bands

shift below the band edge, leading to the apparent and erro-

neous belief that the latter enter the band gap. The effect of the

electric field is to bend the constant band edges shown in

Figure 1a upwards due to the presence of the electrostatic
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potential eFz, and so the Landau levels of the conduction band

can move towards lower energies as long as the corresponding

wave functions are not inside the band gap in position space.

Finally, it deserves consideration the previous discussion for

low values of . As we can see in Figure 6, the parabolic

dispersion that we obtained in the y-direction in the absence of

an electric field splits into two parabolic bands. However, it is

more remarkable to see that, instead of obtaining a splitting

similar to that in Figure 3b, the dispersion goes downwards.

Figure 6: First Landau level dispersions for b = 0.5 and f =0.499. In
panel (a), the original parabolic dispersion along the y-direction splits
into two parabolic dispersions with energies below the band edge for
the chosen fields, whereas in panel (b), the previously obtained split-
ting in the x-direction is now exclusively downwards.

Electron states under perpendicular
electric and magnetic fields
In the previous sections we considered electron states when the

magnetic field is parallel to the band-inverted junction, as

depicted in Figure 1. For completeness, we now briefly discuss

the salient features of the energy spectrum when the electric and

magnetic fields are both perpendicular to the junction. The

vector potential is then given as  in the Landau

gauge and thus . Starting from the Dirac Equation 3 with

this vector potential and using the Feynman–Gell-Mann ansatz

(Equation 4), one is led to a two-dimensional Schrödinger equa-

tion in the XZ plane. The resulting equation turns out to be sepa-

rable in the x and z coordinates and can be straightforwardly

solved by Green’s function techniques. At low or moderate

electric and magnetic fields (f < b < 1), the energy levels within

the gap are found to be

(23)

where n = 0, 1,… The above expression resembles the Landau

levels of relativistic particles for an effective dimensionless

magnetic field beff ≡ b(1 − 5f/8)2 ≈ b(1 − 5f/4). Therefore, the

electric field decreases the Landau level spacing as in the

previous field configuration. There is yet another way of inter-

preting this result. If we undo the change of variables, we obtain

for the energy the usual expression for the Landau levels that

develop from a Dirac cone, the same as in graphene,

(24)

but with a renormalized Fermi velocity,

(25)

where FC = Δ/ed. In [25], it was anticipated that this renormal-

ization of the Fermi velocity in a band-inverted junction with a

perpendicular electric field could be measured by means of

magnetotransport experiments, a prediction that is confirmed

here.

Conclusion
We have studied band-inverted junctions under crossed electric

and magnetic fields, the electric field being applied along the

growth direction. Electron states are described by a spinful two-

band model that is equivalent to the Dirac model for relativistic

electrons. The mass term is half the bandgap and changes its

sign across the junction. For the sake of algebraic simplicity, we

assumed same-sized and aligned gaps, although this is not a

serious limitation to the validity of the results [28].

In the absence of external fields, it is well known that band-

inverted junctions support topologically protected states locat-

ed at the interface. Their energy lies within the common gap of

the two semiconductors and the dispersion relation is a Dirac

cone [13,15,16,20]. The Dirac cone remains even if an electric

field perpendicular to the junction is applied, but it widens and

the Fermi velocity is quadratically reduced with the electric

field [25,28]. In this paper we have proved that electrons with

energy within the gap still behave as massless fermions when an

additional magnetic field parallel to the band-inverted junction

is applied. The original Dirac cone widens only in the direction

perpendicular to the magnetic field but remarkably the disper-

sion relation remains gapless. Hence, the Fermi velocity

becomes anisotropic and the combination of both electric and

magnetic fields allows the Fermi velocity to be finely tuned. In

addition, states lying within the semiconductor bands display

relativistic-like Landau levels that split upon the application of

the magnetic and electric fields. Interestingly, if both fields are

parallel to the growth direction, the Landau level spacing can be
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further reduced by the electric field. We expect that the control

of the Fermi velocity of topologically protected states will have

applications for the design of novel electronic devices based on

topological materials.
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