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Abstract
Weyl semimetals are prominent examples of topologically protected quantum matter. These
materials are the three-dimensional counterparts of graphene and great efforts are being devoted
to achieve a thorough understanding of their fundamental physics. In this work, we aim at
contributing to this end by discussing the effect of a single magnetic impurity in Weyl semimetals
as a first step towards considering a larger number of point-like impurities. We find that
resonances appear in the local density of states (LDOS) with a Friedel-like behaviour, oscillating as
a function of distance. By studying the spin-resolved LDOS, we can observe non-trivial and
anisotropic spin textures where the spin components perpendicular to the spin of the impurity
wind around the latter, until the spin becomes completely parallel to the impurity right at the
impurity’s location. Friedel oscillations also play a relevant role in the form of the spin textures,
forming an oscillatory pattern. We believe our results can pave the way to further studies which
consider the presence of a large number of random magnetic impurities.

1. Introduction

In 1929, Hermann Weyl proposed an equation which would describe the behaviour of massless relativistic
particles with well-defined chirality [1, 2]. So far, no experimental evidence has been found to confirm the
existence of elementary particles described by the Weyl equation. However, Weyl fermions have been
theoretically predicted to appear as quasiparticles in solid-state settings where two energy bands meet at
isolated points [3–6]. These systems where Weyl quasiparticles arise are therefore dubbed Weyl semimetals.
Weyl quasiparticles have in fact been revealed experimentally, not only in solid-state systems [7, 8], but also
in photonic [9, 10] and phononic [11] scenarios, where the quasiparticles are of bosonic nature instead.
One of the key features of Weyl semimetals is their topological protection against perturbations. Therefore,
these systems, along with the so-called Dirac semimetals, constitute a new paradigm of topological phases
without the requirement of a bulk energy gap [6].

Because of their relevance in the field of topological matter, the characterization of Weyl semimetals
proves to be necessary towards their potential use in applications. To this regard, the analysis of how these
materials behave in presence of impurities becomes essential. In this context, several studies have been
conducted in Weyl, Dirac, nodal loop and triple-component semimetals [12–25] and topological insulators
[26–36], where signatures of the Kondo effect are observed, the appearance of resonances is displayed and
the stability of these materials against impurities is discussed. In this work, we will work along the lines of
reference [27], where the effect of single scalar and magnetic impurities at the surface of a topological
insulator is considered. In our work, we will consider a Weyl semimetal instead. Furthermore, while most of
the previous works deal with zero-range impurity potentials, we introduce an exactly solvable model using a
non-local separable pseudopotential [37, 38]. In particular, it is worth mentioning that finite-range
pseudo-potentials, such as Yamaguchi’s [39], can nicely reproduce electron interaction with screened, local
Coulomb potentials [40]. In addition, our approach is particularly useful when extending the study to many
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impurities by applying the coherent potential approximation, which would allows us to obtain closed
expressions for the density of states, as we showed recently in the case of non-magnetic impurities at the
surface of a topological insulator [41]. Our results present clear similarities with the two-dimensional case
of a topological insulator, such as the absence of gap openings [27, 35], revealing that the phenomena
discussed herein is inherent to the cone-like structure and not to the dimensionality of the problem. In
contrast to the two-dimensional case, the isotropy of the problem disregards the possibility of observing
different scenarios where the magnetic impurities are perpendicular or parallel to the surface. However, it
allows us to observe spin textures along the three spatial directions. As we shall show, these are highly
non-trivial and anisotropic, with clear winding around the impurity. Additionally, Friedel oscillations are
observed in the local density of states (LDOS) [17], which could potentially be experimentally observed by
using scanning tunneling microscopy (STM) [21, 31, 35].

2. Model

We will consider a single-node Weyl semimetal with a finite bandwidth that we will denote by 2Δ. Thus, the
single particle Hamiltonian for the Weyl semimetal will be

H0(k) = σ · k, (1)

where energies are measured in units of Δ and momenta in units of 1/� with � = �v/Δ and v the Fermi
velocity. Here, σ = (σx,σy,σz) are the Pauli matrices and correspond to a pseudospin degree of freedom. It
must be noted that, although single node models are suitable when considering continuum descriptions [6],
a study of real Weyl materials needs to consider an even number of Weyl fermions with chiralities such that
the total chirality adds up to zero. This is also necessary in order to study the topology of Weyl materials,
together with the appearance of surface states and Fermi arcs that connect both nodes. Moreover,
translational symmetry breaking can affect the robustness of the Weyl nodes [6], as it occurs when
considering finite materials [42]. Therefore, a fuller treatment of the problem at hand, where the impurity
naturally breaks translational symmetry, would require considering two nodes so as to study the topological
protection. This can be achieved by considering quadratic terms in the Hamiltonian [42], which complicate
matters slightly. However, for small enough impurity strengths, the Weyl nodes should remain effectively
protected and decoupled, as can be understood by considering adiabatic continuity. Therefore, we proceed
hereon with the single-node model for simplicity, although it must be carefully remembered that this is a
first order approximation to the problem.

The single impurity will be included using a non-local separable pseudopotential of the form [37, 38, 40,
41, 43]

V̂ = |ω〉λ 〈ω| , (2)

where ω(r) = 〈r|ω〉 is the so-called shape function, which shall be specified later, λ = U for the scalar
impurity and λ = US · σ for the magnetic impurity, with U a real number and S a unit vector defining the
orientation of the impurity’s spin. Hence, the full Hamiltonian will be

Ĥ = Ĥ0 + V̂ , (3)

with 〈k|Ĥ0|q〉 = H0(k)δ(k − q). In the spirit of reference [27], we shall be interested in calculating the
following quantities: the spin-unresolved LDOS

ρ(r, E) = − 1

π
Im Tr

[
〈r|Ĝ(E)|r〉

]
, (4)

the local density of up/down spins in direction i

ρ±i (r, E) = − 1

π
Im Tr

[
〈r|Ĝ(E)

(
1 ± σi

2

)
|r〉

]
, (5)

and the energy-resolved spin density average

s(r, E) = − 1

π
Im Tr

[
〈r|Ĝ(E)

σ

2
|r〉

]
, (6)

where Ĝ(z) = (z − Ĥ)−1 is the retarded Green’s function of the system with z = E + i0+. If we denote the
retarded Green’s function associated to Ĥ0 by Ĝ0, we may find Ĝ from

Ĝ = Ĝ0 + Ĝ0T̂Ĝ0, (7)
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with

T̂ =
(

1 − V̂Ĝ0

)−1
V̂ , (8)

which can be equivalently written as
T̂ = |ω〉W 〈ω| , (9)

with

W =
[

1 − λ〈ω|Ĝ0|ω〉
]−1

λ. (10)

In order to calculate the aforementioned quantities [cf equations (4)–(6)] we need to first calculate 〈r|Ĝ|r〉.
To do so, we need to specify a shape function. We will choose it such that ω(k) = 〈k|ω〉 is spherically
symmetric, i.e. ω(k) = ω(k) with k = |k|, and it is short-ranged in coordinate space. Therefore, we can
write it as ω(k) = Θ(kc − k), with Θ(x) the Heaviside step function and kc = 1 the momentum cutoff.
Notice that kc = 1 is the dimensionless momentum corresponding to Δ/�v. In what follows, it must be
therefore be remembered that kc is not a parameter. Let

P(E, r) = − 1√
2π r

[iπ sin(Er) + C(E, r) sin(Er) + S(E, r) cos(E, r)] , (11)

being C(E, r) and S(E, r) combinations of the sine and cosine integral functions

C(E, r) = Ci [(kc − E)r] − Ci [(kc + E)r] ,

S(E, r) = Si [(kc + E)r] − Si [(kc − E)r] .
(12)

Then, after some algebraic manipulations, detailed in the supplementary material
(https://stacks.iop.org/NJP/23/083003/mmedia), we arrive at the following expression for 〈r|Ĝ|r〉

〈r|Ĝ|r〉 = G0(E) + Q(E, r)WQ(E,−r), (13)

where

G0(E) = − E

4π2

(
i Eπ + 2kc − E ln

kc + E

kc − E

)
, (14)

and
Q(r, E) = α(E, r) + β(E, r)σr, (15)

with α(E, r) = EP(E, r), β(E, r) = −i∂rP(E, r) and σr = σ · r̂. It must be noticed that G0(E) as it appears in
equation (14) is the unperturbed Green’s function at the origin when considering a finite bandwith, as
shown by the presence of kc. In any case, the terms dependent on kc in equation (13) are irrelevant in the
LDOS and related quantities when taking the imaginary part. However, G0(E) will appear as such, with the
cutoff, in the expressions given below for W, as shown in the supplementary material.

3. Scalar impurity

In this section we consider the case of a scalar impurity, that is, one where λ = U with U a real number.
From the previous results, we find that the spin-unresolved LDOS is given by

ρ(r, E) =
E2

2π2
− 2

π
Im

[
α2(E, r) − β2(E, r)

γs(E)

]
, (16)

where
γs(E) = U−1 − (2π)3G0(E). (17)

The symmetry of the problem implies that the spin-resolved LDOS along any direction is simply half of the
LDOS, that is,

ρ±i (r, E) =
1

2
ρ(r, E), (18)

as can also be seen directly from equation (5). Finally, the energy-resolved spin density average is identically
zero, as can be seen from equation (6).

In figure 1(a) we show the LDOS for three values of r. We will be considering U = 1 hereafter. In the
following section where the magnetic impurity is considered, this value of U will be justified with
experimentally feasible values. As it can be observed in the figure, a resonance peak in the otherwise
quadratic LDOS appears, which gets reduced as the distance to the impurity increases. Moreover, we
observe that the resonance gets shifted towards zero energy as the distance increases, so that far from the
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Figure 1. (a) LDOS as a function of energy for three values of r = 10, 17 and 23. Also shown is the impurity-free LDOS (grey
curve). The peak gets reduced in size as the distance to the impurity increases and it also displaces towards zero energy. (b) LDOS
as a function of energy and distance to the impurity. Friedel oscillations are observed as the LDOS gets reduced in an oscillatory
fashion when r increases.

impurity the parabolic LDOS is recovered. The reduction in size of the resonance peak occurs accompanied
by Friedel oscillations, as can be observed in figure 1(b). The occurrence of Friedel oscillations can be traced
back to the interference of incoming and outcoming waves due to scattering processes at the impurity [44].

4. Magnetic impurity

We now turn our attention to the case of a magnetic impurity. Because of the spherical symmetry of the
problem, the spin of the impurity can point along any direction of our choice. Thus, we will choose the spin
to point along the z-direction, i.e. S = ẑ. Let

γm(E) =
1

U2(2π)3G0(E)
− (2π)3G0(E). (19)

Then, the LDOS is given by the same expression as equation (16) with γs(E) → γm(E). In contrast to the
unresolved LDOS, the spin-resolved LDOS depends on r but also on the polar angles θ and ϕ. Indeed, we
find that

ρ±x (r, θ,ϕ, E) =
E2

4π2
− 1

π
Im

[
α2 − β2

γm
(E)

∓ β2ν(E) sin(2θ) cos ϕ± 2iαβν(E) sin θ sin ϕ

]
,

ρ±z (r, θ,ϕ, E) =
E2

4π2
− 1

π
Im

[
α2 − β2

γm(E)
± α2ν(E) ∓ β2ν(E) cos(2θ)

]
,

(20)

where we have defined

ν(E) =
1

γm(E)U(2π)3G0(E)
. (21)

We have omitted ρ±y since it is obtained from ρ±x by doing ϕ→ ϕ− π/2. Finally, the spin-resolved density
average, as it can be observed from equation (6), can be found as

s(E, r) =
ρ+x − ρ−x

2
x̂ +

ρ+y − ρ−y
2

ŷ +
ρ+z − ρ−z

2
ẑ. (22)

Taking into account that the quantity with dimensions corresponding to U is given by U∗ = UΔ�3 and that
U∗ = JS/2, then a value of U = 1 is reasonable if we consider that typical values for Weyl semimetals of
�v ∼ 250 meV nm [45], the exchange energy J ∼ 300 meV nm3 [46–48] and a bandwidth cutoff of
Δ ∼ 250 meV. In figure 2(a) we show the LDOS as a function of E for the same values of r as those in
figure 1(a). As we can see, the single resonance splits into two symmetric resonances with half the size of the
one due to the scalar potential, as can be understood from the fact that λ = U in the scalar case whereas in
the magnetic case we have λ = Uσz. Similarly, Friedel oscillations appear, as shown in figure 2(b).

Next, we show results for the spin-resolved LDOS as a function of distance along the x-axis for the
energy of the negative resonance peak. In figure 3(a) we show the unresolved LDOS. In figures 3(b) and (c),

4



New J. Phys. 23 (2021) 083003 Á Díaz-Fernández et al

Figure 2. (a) LDOS as a function of energy for three values of r = 10, 17 and 23 in the case of a magnetic impurity. The peaks
follow the same trend as in the scalar case as r increases. The size of the peaks is half that of the scalar case. (b) LDOS as a
function of energy and distance to the magnetic impurity. Friedel oscillations are observed as the LDOS gets reduced in an
oscillatory fashion as r increases.

Figure 3. (a) Spin-unresolved LDOS along the x-axis at the negative resonance peak. (b), (c) and (d) show the spin-resolved
LDOS along the x-axis at the negative resonance peak for up/down spins in the x, y and z directions, respectively. In (b), the up
and down densities coincide, leading to sx = 0 along the x-axis. In (c), the up and down densities are mirror images of each
other. Finally, in (d) there are no spin-down states right at the impurity.

we can see the spin-resolved LDOS in the x and y-directions, respectively, as a function of distance x to the
impurity. Interestingly, ρ±x coincide, whereas ρ+y is the mirror image of ρ−y . As we shall see, this means that
the spin textures will circulate around the impurity in the xy-plane. In figure 3(d), we can see ρ±z . As we
observe, right at the impurity, which is aligned along the positive z-direction, there are no spin-down
statesalong the z-direction. Away from the impurity, however, the states become mostly antiparallel to the
impurity, similar to what has been observed in the case of topological insulators [27].

Finally, we can observe the spin textures for the negative and positive resonance peaks. The results for
the negative resonance are shown in figures 4(a) and (b) and those of the positive resonance are displayed in
figures 4(c) and (d). Arrows indicate the components of s in the plane shown and colours indicate the size
of the projection along the direction perpendicular to the plane, red (blue) colour denoting a dominating
component pointing into (out of) the plane. The spin textures reported herein depict non-trivial behaviour,
wherethe components perpendicular to the impurity circulate around it, as it was anticipated previously
when observing the spin-resolved LDOS, and similar to what has been seen in the case of topological
insulators [27]. We can also notice that, although the circulation is in the clockwise direction for both spins,
the direction of the components parallel to the impurity are reversed. It is also interesting to observe that
the Friedel oscillations discussed earlier show up also in the spin textures, a fact that was not seen to occur
in topological insulators [27].
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Figure 4. (a) and (b) correspond to the spin textures around the negative resonance in the xy and yz planes, respectively. The
same is shown in (c) and (d) for the positive resonance. As it can be seen, the spins circulate in the clockwise direction for both
resonances in the xy-plane, while having the z-component reversed. Friedel oscillations in the LDOS also show up in the spin
textures.

5. Conclusions

In the field of topological matter, Weyl semimetals are attracting great interest due to their unusual
transport, magnetic and optical properties [49]. A proper understanding of Weyl semimetals exposed to
different perturbations is therefore in order. In this paper, we aim at contributing to such an enterprise by
considering the effect of a single magnetic impurity on relevant properties of such systems, such as the
LDOS, the spin-resolved LDOS and the spin textures. The analysis presented in our paper constitutes a first
step towards a more elaborate study on the presence of multiple random magnetic impurities, which shall
be tackled elsewhere.

In our work, we have shown that certain features displayed in the two-dimensional surface states of
topological insulators can also be realised in Weyl semimetals, such as the presence of symmetric resonances
around zero energy in the LDOS [27], together with Friedel oscillations occurring due to the interference of
incoming and outcoming waves from scattering at the impurity. These Friedel oscillations have an effect on
the spin textures at the resonance peaks. The spin textures are highly non-trivial and anisotropic, winding
around the impurity and becoming parallel to the spin of the impurity right at the location of the latter.
Since the values of the impurity strength considered herein are within those for typical Weyl semimetals, we
believe that our results could be observed experimentally. In particular, Friedel oscillations could be
unraveled by STM measurements [21, 31, 35].
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[10] Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Soljai M 2015 Science 349 622
[11] Xiao M, Ye L, Qiu C, He H, Liu Z and Fan S 2020 Sci. Adv. 6 eaba0111
[12] Huang Z, Arovas D P and Balatsky A V 2013 New J. Phys. 15 123019
[13] Huang Z, Das T, Balatsky A V and Arovas D P 2013 Phys. Rev. B 87 155123
[14] Sun J-H, Xu D-H, Zhang F-C and Zhou Y 2015 Phys. Rev. B 92 195124
[15] Chang H-R, Zhou J, Wang S-X, Shan W-Y and Xiao D 2015 Phys. Rev. B 92 241103
[16] Mitchell A K and Fritz L 2015 Phys. Rev. B 92 121109
[17] Zheng S-H, Wang R-Q, Zhong M and Duan H-J 2016 Sci. Rep. 6 36106
[18] Deng M-X, Luo W, Wang R-Q, Sheng L and Xing D Y 2017 Phys. Rev. B 96 155141
[19] Deng Y-H, Lü H-F, Ke S-S, Guo Y and Zhang H-W 2018 J. Phys.: Condens. Matter. 30 435602
[20] He C 2018 Phys. Lett. A 382 440
[21] Rüßmann P et al 2018 Phys. Rev. B 97 075106
[22] Lü H-F, Deng Y-H, Ke S-S, Guo Y and Zhang H-W 2019 Phys. Rev. B 99 115109
[23] Novelli P, Taddei F, Geim A K and Polini M 2019 Phys. Rev. Lett. 122 016601
[24] Rancati A, Pournaghavi N, Islam M F, Debernardi A and Canali C M 2020 Phys. Rev. B 102 195110
[25] Lee Y-L and Lee Y-W 2021 J. Phys.: Condens. Matter. 33 135805
[26] Liu Q, Liu C-X, Xu C, Qi X-L and Zhang S-C 2009 Phys. Rev. Lett. 102 156603
[27] Biswas R R and Balatsky A V 2010 Phys. Rev. B 81 233405
[28] Chen Y L et al 2010 Science 329 659
[29] Zazunov A, Kundu A, Hütten A and Egger R 2010 Phys. Rev. B 82 155431
[30] Okada Y et al 2011 Phys. Rev. Lett. 106 206805
[31] Beidenkopf H, Roushan P, Seo J, Gorman L, Drozdov I, Hor Y S, Cava R J and Yazdani A 2011 Nat. Phys. 7 939
[32] Lu J, Shan W-Y, Lu H-Z and Shen S-Q 2011 New J. Phys. 13 103016
[33] Black-Schaffer A M and Balatsky A V 2012 Phys. Rev. B 85 121103
[34] Black-Schaffer A M, Balatsky A V and Fransson J 2015 Phys. Rev. B 91 201411
[35] Sessi P et al 2016 Nat. Commun. 7 12027
[36] Yang Y-Y, Deng M-X, Luo W, Ma R, Zheng S-H and Wang R-Q 2018 Phys. Rev. B 98 235152
[37] Sievert P R and Glasser M L 1973 Phys. Rev. B 7 1265
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