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Abstract

We investigate numerically the universal quantum fluctuations of the resistance and conductance in disordered dimer
semiconductor superlattices. These systems exhibit sets of extended states (in spite of being disordered) due to the resonance
induced by the dimer structure. We show that the transmission amplitude t (E) is a function of the energy of injected electrons
and that its main characteristic is a “center” where T (E) & 1. This region of energy can be considered as consisting of weakly
localized states proper of mesoscopic systems. On the other hand, the landscape of the allowed energies is a complex one,
because close to the band edges, where T (E) < 1, states are strongly localized. We attempt to understand these two regions
by investigating the universal fluctuation properties of the resistance and conductance in both of them. We also hope that this

study will contribute to the knowledge about universal fluctuations in mesoscopic systems.
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1. Introduction

One of the main reasons for the interest in meso-
scopic systems is connected with the fabrication of
future electronic nano-devices [1,2]. In this context,
there exist a lot of problems that must be solved be-
fore wide applications of such devices are possible.
In particular, when the density of these devices grows
(up to 10°dev/cm? in the future memory chips),
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collective quantum effects become significant. These
effects include device—device interaction, cooperative
quantum effects, and others [3,4]. These quantum col-
lective interactions lead to additional instabilities, in
comparison with the classical ones.

The pure quantum instability, in which we are
mainly interested in this paper, is connected with
the so-called “quantum conductance fluctuations” in
mesoscopic devices [5-17]. These fluctuations are
universal and appear because under the condition
I < Ipn quantum interference effects play a significant
role, even in the presence of disorder. Here / is the lin-
ear size of the mesoscopic sample and [, is the length
of the phase coherence of the electronic wave func-
tion. Actually, when [ < [h, @ unique quantum wave
function exists for the whole mesoscopic sample.
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This wave function significantly depends on the spe-
cific realization of the positions of defects (even at
given concentration of defects). Usually this situation
is realized at low enough temperatures when inelastic
scattering can be neglected. These quantum univer-
sal fluctuations lead to the “universal problem” of
non-reproduction of the results of measurements in
different mesoscopic devices.

2. Previous results on universal fluctuations

As was shown by Melnikov [5,6} and Abrikosov
[7] (see also references cited in [5-7] the distribution
function W (p, L) of the resistance p for a 1D disor-
dered system of length L (measured in the units of
the mean free path length) does not become narrow as
L — oo, and has a flat tail at large p. To compute the
distribution function W(p, L) Melnikov [6] used a re-
currence relation for the S-matrix which describes the
elastic scattering processes of an electron by isolated
impurities.

The main results of [5-7] can be summarized in
the following way. Let t be the transmission proba-
bility, o = 1/t the resistance, and o = t be the con-
ductance of the system (all these functions are taken
dimensionless). Then, for a disordered system with
disorder in the form of Gaussian white noise, the dis-
tribution function W(p, L) is found to be generally
non-Gaussian. For large L and In p (strong localized
limit), the asymptotics of the distribution function has
the form [5-7],

—(L—In p)?/4L
W(np, L) = ———e~(L~p)7/4L
Van L
L>1, Inp>1. ()

It then follows from (1) that in the strong localized
limit, the quantity Inp has a Gaussian distribu-
tion (logarithmically normal in p) with a variance
L)'/

Already the first calculations performed in [6]
showed that the main reason for the anomalous
(logarithmically normal) behavior of the distribu-
tion function W (p, L) in the strong localized regime
(p > 1) is connected with strong quantum interfer-

ence effects. These results were further significantly
developed in [10-17], for 2D and 3D mesoscopic
systems, and can be summarized briefly as follows
[15]. The one-parameter scaling g ~ AG/e? (where
G is the dimensional conductance) describes only the
main structure of the distribution function of conduc-
tance in a weakly localized (“metallic”) region [18].
In this case, the distribution function can be consid-
ered close to a Gaussian. In the localized regime all
moments of fluctuations become of the same order as
the average conductance, and the Gaussian distribu-
tion function vanishes. Moreover, even in the case of
weak localization the tails of the distribution function
which define the high-order moments of fluctuations
are shown to be logarithmically normal [15].

3. Results in random dimer superlattices

The main idea of this work, which we present below,
is the following. We have investigated numerically the
universal quantum fluctuations of the conductance o
in a random dimer semiconductor superlattice (DSL)
[19]. In this model of disordered superlattice (SL), we
consider that the width of the quantum wells takes at
random only two values, @ and a’. The thickness of
the barriers separating neighbor quantum wells is as-
sumed to be the same in the whole SL, 5. A DSL is
constructed by imposing the additional constraint that
quantum wells of thickness a’ appear only in pairs,
hereafter called dimer quantum well (DQW), as shown
in Fig. 1. It is not difficult to show that there exist a
resonant energy, that depends only on the physical pa-
rameters of the SL, for which perfect transparency is
attained at a single DQW. What is most important, this
resonant phenomenon survives when several DQWs
are placed at random in a SL (DSL) [20]. This means
that the main characteristic of the DSL, as compared
to random SLs, is the occurrence of a set of states for
which 7(E) = 1, close to the resonant energy, pro-
vided that the SL parameters are chosen so that the
resonant energy lies in an allowed miniband. This re-
gion of energy can be considered as a weakly localized
regime. On the other hand, in the vicinity of the edges
of a miniband 7(F) « 1, and these regions of energy
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Fig. 1. Schematic diagram of a SL containing a DQW.

can be considered in the regime of strong localization.
Therefore, we hope that investigating the fluctuation
properties of the resistance p(E) = 1/7(E) and the
conductance o(E) = 7(E) in these two regions by
varying the energy E inside a chosen miniband, we can
obtain a better understanding of the role of universal
fluctuations in this mesoscopic system.

As a particular example, we have chosen a GaAs-
Gag ¢5Alg 35As structure, where the conduction-band
offset is AE; = 0.25eV (see Fig. 1). Energies are
measured relative to the bottom of the quantum wells.
The effective masses are m* = 0.067m in GaAs and
m* = 0.096m in GaggsAlg35As, m being the free
electron mass. In our computations we have taken
a =b = 32A and a’ = 26A. Thus, the resonant
energy is found to be E; = 0.141eV and lies within
the only allowed miniband below the barrier {20].
Fig. 2 shows the conductance o (E) as function of the
electron energy E for different fractions ¢ of DQWs.
Results correspond to 1000 ensemble averages, but
we should mention here that for a single realization
the pattern of the conductance presents several narrow
peaks displaying a very high value of transmittance,
the number of these peaks being related to the num-
ber of the wells in the DSL (see [20, Fig. 3] for more
details). It is apparent the noticeable enhancement
of o(E) close to the resonant energy E;, the max-
imum value being independent of the fraction ¢ of
DQWs. Fig. 3 shows the relative fluctuation of the
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Fig. 2. Conductance vs. energy for different fractions ¢ of the
DQWs. Results correspond to ensemble averages of 1000 DSLs
with N = 200 barriers. Notice the strong enhancement of the
conductance close to the resonant energy E; = 0.141eV.
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Fig. 3. Relative fluctuations of the conductance as a func-
tion of the electron energy. Parameters are the same as in
Fig. 2. Notice the marked reduction around the resonant energy
Er =0.141eV.

conductance for the same DSL, defined as Ac/o =

(62)/{o}2 — 1 and (- -} stands for ensemble aver-
age. It is worth mentioning the strong decrease of the
fluctuation level close to the resonant energy E; and
that this value is independent of the fraction of DQWs.
Finally, in Fig. 4 we plot the distribution function
W for In p in the strong localization regime, namely
away the resonant energy (Fig. 4(a)), and in the weak
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Fig. 4. Distribution function W of In p for two different fractions of DQWs: (a) at £ = 0.12eV, away from the resonant energy and

(b) at the resonant energy Er = 0.141¢V.

localization regime, namely at the resonant energy
(Fig. 4(b)). In the former case the distribution function
is close to the Gaussian distribution in In p (logarith-
mically normal distribution), whereas in the later case
the distribution function is significantly different from
the logarithmically normal distribution, and presents
a long tail in the low resistance region and clearly be-
comes non-symmetric.

4. Discussions and conclusions

From the above scenario we can draw the following
conclusions. First, universal fluctuations are severely
reduced in the weak localization regime (see, Fig. 3).
This means that the good transport properties of DSLs
are quite independent of the particular realization of
the system. This conclusion agrees with our previous
claim that the DSL presents high values of the conduc-
tance, no matter how the particular arrangement of the
DQWs is in each realization of the system [19,20]. On
the contrary, in the opposite case, when localization
effects are strong, the fluctuations are very significant.
This is expected to occur because the spread of elec-
tronic wave functions is small and, therefore, the elec-
tronic state is very sensitive to the local enviroment,
which vary from sample to sample or even from one
region to another within the same sample. In addition,

we have found that the value of the fluctuations in the
weak localization regime is also independent of the
number of DQWs placed in the DSL, which gives ad-
ditional support about the generality of the delocaliza-
tion phenomena in DSLs. Second, we have confirmed
numerically that in the case of strong localization, the
distribution function W (ln p, L) is close to Gaussian
(logarithmically normal distribution) for DSLs, as it
is the case in one-dimensional lattices with Gaussian
white noise, given in (1). However, this is not the situ-
ation in the weak localization regime, where this dis-
tribution function is asymmetric and presents a long
tail in the low resistance region. This implies that the
probability of finding DSLs with high conductance is
actually significant. However, a complete theory of this
asymmetric distribution is still lacking, which points
out the need for more work in this direction.
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