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Super Bloch oscillations in the Peyrard–Bishop–Holstein model
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Recently, polarons in the Peyrard–Bishop–Holstein model under DC electric fields were established to
perform Bloch oscillations, provided the charge–lattice coupling is not large. In this work, we study this
model when the charge is subjected to an applied field with both DC and AC components. Similarly
to what happens in the rigid lattice, we find that the carrier undergoes a directed motion or coherent
oscillations when the AC field is resonant or detuned with respect to the Bloch frequency, respectively.
The electric density current and its Fourier spectrum are also studied to reveal the frequencies involved
in the polaron dynamics.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In perfect crystals whose lattices generate a periodic potential,
Bloch theorem predicts states extended uniformly over the whole
system [1]. However, if a uniform electrical field F is applied, in
addition to this periodic potential, all states become spatially lo-
calized due to Bragg reflections [2–4]. In such a case, neglecting
scattering effects, electron keep oscillating within a finite volume.
The frequency ωB and the amplitude LB of the oscillation can be
established from semiclassical arguments [5,6]. The former is usu-
ally known as Bloch frequency and it is proportional to the applied
electric field F , namely ωB = eFa/h̄, where −e is the electron
charge and a refers to the lattice period along the field direction.
This periodic motion takes place in real and in k space, and it is
known as Bloch oscillation (BO). Since scattering processes, due
to phonons or defects for instance, destroy the coherence neces-
sary to support BOs, its experimental detection is highly nontrivial.
The first BOs were detected in semiconducting superlattices [7–11].
More recently, cold atoms and Bose–Einstein condensates (BECs) in
optical lattices have been revealed as a very convenient scenario
to observe BOs since scattering processes can be significantly re-
duced [12–14]. However, decoherence effects cannot be removed
completely and should be taken into account from a theoretical
point of view. For instance, in BECs the atom–atom interaction
gives rise to well-known dynamical instabilities which can destroy
the coherence required to observe stable BOs [15–17]. Still, there
have been some experimental and theoretical proposals to avoid
these undesirable effects [18,19]. Also, in organic molecules, which
are very flexible, the vibrations of the lattice are relevant and could
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rapidly degrade the electron quantum coherence. In this regard,
the Peyrard–Bishop–Holstein (PBH) model of charge transport in
DNA [20] was considered to demonstrate that polarons perform
BOs even at realistic values of the carrier–lattice coupling [21].

In the last decade, a new interest in the dynamics of a quasi-
particle affected not only by a DC field but also by a superimposed
AC field has emerged [22–25]. Remarkably, it was demonstrated
experimentally that a weakly interacting BEC in a harmonically
driven tilted potential can support directed transport or large am-
plitude oscillations of the wave function, depending on the driven
frequency [26]. The latter are known as super Bloch oscillations
(SBOs) and their characterizing parameters can also be described
semiclassically [27]. In this work we use the PBH model to study
how the carrier–lattice interaction affects the dynamics of the
SBDs. We will also calculate the current density associated to the
charge motion occurring under the applied fields and its Fourier
spectrum to reveal the main frequencies involved in the polaron
dynamics.

2. Model

The Hamiltonian of the PBH model can be written as

H = Hlat + Hcar + Hint. (1)

The first term describes a one-dimensional anharmonic lattice ac-
cording to the Peyrard–Bishop model [28]. A single degree of free-
dom xn is assigned to every site, taking into account its displace-
ment from the equilibrium configuration. Hlat for a homogeneous
lattice reads

Hlat =
N∑[

1

2
mẋ2

n + V (xn) + W (xn, xn−1)

]
, (2)
n
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where m is the mass of each site and n = 1,2, . . . , N labels the
sites along the system. Two potential terms appear in this Hamil-
tonian, namely a local Morse potential V (xn) and a nonlinear an-
harmonic coupling between nearest-neighbors W (xn, xn−1)

V M(xn) = V 0
(
e−αxn − 1

)2
, (3a)

W (xn, xn−1) = k

4

(
2 + e−β(xn+xn−1)

)
(xn − xn−1)

2. (3b)

For the sake of concreteness, the fitting parameters are chosen
according to those obtained to reproduce experimental DNA melt-
ing curves within the Peyrard–Bishop model, m = 300 amu, V 0 =
0.04 eV, α = 4.45 Å

−1
, k = 0.04 eV/Å

2
and β = 0.35 Å

−1
[29].

The charge carrier Hamiltonian Hcar in the unbiased lattice
is expressed within the nearest-neighbor approximation as fol-
lows [30]

Hcar = −T
N∑
n

(
a†

nan+1 + a†
n+1an

)
, (4)

where T is the nearest-neighbor hopping and a†
n and an denotes

the carrier creation and annihilation operators, respectively. Since
there is not a common value for the parameter T in the litera-
ture, we will take T = 0.1 eV hereafter as a good representative
one [31–33].

The last term in (1) takes into account a Holstein-like carrier–
lattice interaction as an on-site energy correction as follows [30]

Hint = −χ

N∑
n

xna†
nan. (5)

Here χ denotes the carrier–lattice coupling constant. Ab-initio es-
timations of this coupling χ are scarce and therefore we will vary
its magnitude in our numerical simulations.

In typical molecular systems it is possible to use a semiclas-
sical approach due to the different time-scales of the charge and
the lattice dynamics [34]. Thus, the dynamics of the carrier un-
der a field with both DC and AC components such as F (t) = F0 +
F1 sin(ωt + φ) can be studied by way of the following Schrödinger
equation [20]

ih̄
dψn

dt
= −[

U0 + U1 sin(ωt + φ)
]
nψn

− T (ψn+1 + ψn−1) + χxnψn, (6)

where ψn is the probability amplitude for the charge carrier lo-
cated at the nth site. The parameters Ui = eaFi with i = 0,1 are
the energy terms associated to the applied electric fields F0,1, a
being the period of the lattice (e.g. a = 3.4 Å in DNA). The last
term in Eq. (6) describes the carrier–lattice coupling through the
constant χ and the displacement xn from its equilibrium position.
Newton’s equations of motion for the displacements xn become

m
d2xn

dt2
= −V ′

M(xn) − W ′(xn, xn−1)

− W ′(xn, xn+1) − χ |ψn|2, (7)

where the prime indicates differentiation with respect to xn . In
what follows we will take the stationary polaron of the unbiased
system under consideration [30] as the initial condition for the in-
tegration of Eqs. (6) and (7) in a lattice subjected to the electric
field F (t).

3. Motion of the polaron in a biased system

In Ref. [26] the dynamics of a BEC under superposed DC and AC
forces was observed experimentally. Later, the authors of Ref. [27]
studied the wave packet dynamics under these conditions in a
rigid lattice (χ = 0) by means of a semiclassical approach and
numerical calculations. In both works it was reported that for a
resonant AC field with frequency ω = ωB , the wave function of the
carrier performs a directed motion with oscillatory features and
drift velocity depending on the phase φ. On the contrary, if the
frequency of the AC field is detuned with respect to ωB , the wave
packet exhibits a beating effect called SBOs [26]. These two situa-
tions will be referred to as resonant and detuned cases hereafter.
In this work, we will focus on two set of parameters as represen-
tative values of these two different situations, for several values of
the carrier–lattice coupling.

First, we analyze how the polaron evolves when the field
F (t) = F0 + F1 sin(ωt +φ) is applied. The time-domain evolution of
the carrier wave packet obtained by direct integration of Eqs. (6)
and (7) is shown in Fig. 1 for the resonant and the detuned cases,
and χ = 0.1 eV/Å and χ = 0.3 eV/Å.

Similarly to the case of the rigid lattice, the two upper panels
of Fig. 1 (resonant cases with ω = ωB ) show the directed motion
of the polaron as well as superimposed BOs. On the contrary, the
two lower panels of Fig. 1 (detuned cases with ω = 1.2ωB ) shows
that the carrier perform SBOs. It is to be noticed that by increas-
ing the strength of the carrier–lattice coupling the localization of
the stationary states becomes larger and therefore the wave packet
motion is more clearly observed (see Fig. 1(d)). We would like to
stress that contrary to what happens in the rigid lattice [27], due
to the nonlinear interactions the wave packet remains localized in
time except for long time-scales if the carrier–lattice coupling is
large, as seen in Fig. 1(b).

The dynamics of the polaron can be monitored in more detail
by means of the centroid of the carrier wave function c(t) = n̄(t)−
n̄(0) with n̄(t) = ∑

n n|ψn(t)|2. Similarly we define the dimension-
less magnitude l(t) = ξ(t)− ξ(0) with ξ(t) = ∑N

n=1 nxn(t)/a for the
lattice displacements. We also study the Fourier transform of these
magnitudes to reveal the frequencies involved in the dynamics of
the polaron.

Fig. 2 shows that c(t) and l(t) perform a directed motion with
short-time-scale oscillations in a lattice of N = 2000 sites. The
Fourier spectrum c(ω) indicates that the main frequency of such
oscillations is equal to ωB = eaF0/h̄ = 51.67 THz (very weak peaks
at multiples of ωB are also found), while for l(ω) the Morse fre-
quency ωM = √

2V 0/m = 7.22 TH is the relevant one. Notice that
the ωM is the harmonic frequency of the small amplitude oscil-
lations of a mass m around the minimum of the Morse poten-
tial (3a).

The results corresponding to the detuned cases (ω = 1.2ωB ) are
shown in Fig. 3. c(t) and l(t) display a more complex dynamics and
absence of directed motion. In the case of c(t) the dynamics cor-
responds to the SBOs with a large period 2π/
ω defined by the
detuning frequency 
ω = 0.2ωB and a short period 2π/ωB . In ad-
dition, in c(ω) we obtained other peaks which can be described
with the full analytical solution of the centroid motion in the rigid
lattice [22] (see the insets of the left panels of Fig. 3). The main
frequency involved in l(t) is again the Morse frequency but now
we also observe the occurrence of a smaller peak at the detuning
frequency (see the insets of the right panels of Fig. 3). Therefore,
we come to the conclusion that in both situations the oscillations
of the lattice and the carrier are almost decoupled, at least at mod-
erate applied fields.

4. Average current density

In view of the oscillating behavior of the carrier wave packet
described in the previous section, it seems reasonable to expect
that the electric current behaves in a similar way. Therefore, and
since the current is a macroscopic magnitude which can be directly
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Fig. 1. Modulus of the carrier wave function in a lattice of N = 750 sites as a function of position and time with F0 = 10 meV/Å F1 = 0.5F0 and χ = 0.1 eV/Å (left panels)
and χ = 0.3 eV/Å (right panels). The two upper panels correspond to resonant cases with ω = ωB and φ = 0. The two lower panels correspond to detuned cases with
ω = 1.2ωB and φ = 0. Light and dark regions indicate nonzero and zero values, respectively.
Fig. 2. Centroid of the carrier wave function (left) and l(t) (right) as a function of
time in a lattice of N = 2000 sites for ω = ωB , φ = 0 and χ = 0.1 eV/Å (upper
panel) and χ = 0.3 eV/Å (lower panel). Insets show the corresponding Fourier spec-
tra.

observed in experiments, we calculate the average current density
J (t) according to the following expression [20]

J (t) = h̄e

mc Na2

N∑
n=1

Im
[
ψ∗

n (ψn+1 − ψn−1)
]
, (8)

where mc is the mass of the carrier.
As in the previous section, we will consider different values

of the carrier–lattice coupling for the representative resonant and
detuned cases. Typical results of our simulations are collected in
Fig. 3. Same as in Fig. 2 but for the detuned case with ω = 1.2ωB and φ = 0 in a
lattice of N = 750.

Figs. 4 and 5. The left panels show the envelope of the average cur-
rent density (8) over a long time interval while the insets display
the short time behavior for two different values of the coupling
constant χ = 0.1 eV/Å and χ = 0.3 eV/Å.

The average current density displays a well-defined oscillatory
behavior in both cases, whose relevant frequencies match perfectly
those obtained from the centroid motion in Figs. 2 and 3. Notice
that these frequencies are in agreement to those analytically pre-
dicted for the rigid lattice in all cases [22,27]. We stress that the
increase of the carrier–lattice coupling leads to a faster modulation
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Fig. 4. Left panels show the envelope of the average current density as a function of
time in a lattice of N = 2000 sites for the resonant case for ω = ωB , φ = 0 and χ =
0.1 eV/Å (upper panel) and χ = 0.3 eV/Å (lower panel). Insets show the short time
behavior of the average current density. The right panels show the corresponding
Fourier transform of the average current density.

Fig. 5. Same as in Fig. 4 but for the detuned case with ω = 1.2ωB and φ = 0 in a
lattice of N = 750.

of the average current density but, remarkably, the oscillations do
not decay in time.

5. Conclusions

We have studied the dynamics of the carrier dynamics in the
PBH model under superimposed DC and AC fields and found that
it is similar to that found in the rigid lattice [26,27]. The carrier–
lattice coupling leads to a distortion of the initial shape of the
wave packet at long times and to a faster modulation of the cen-
troid motion. Still, the polaron display SBOs that do not decay in
time when the driven frequency is detuned with respect to the
Bloch frequency. The carrier is partially decoupled from the lattice,
whose relevant frequency is not the Bloch frequency but the one
associated to the Morse potential.
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