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We study the scattering of massless Dirac particles by oscillating barriers in one dimension. Using the
Floquet theory, we find the exact scattering amplitudes for time-harmonic barriers of arbitrary shape. In
all cases the scattering amplitudes are found to be independent of the energy of the incoming particle
and the transmission coefficient is unity. This is a manifestation of the Klein tunneling in time-harmonic
potentials. Remarkably, the transmission amplitudes for arbitrary sharply-peaked potentials also become
independent of the driving frequency. Conditions for which barriers of finite width can be replaced by
sharply-peaked potentials are discussed.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Shortly after Dirac formulated his celebrated equation for rel-
ativistic electrons [1,2], Klein discovered that Dirac particles un-
dergo anomalous tunneling at high potential barriers [3] (see
Ref. [4] for a review). The classical example used to discuss the
Klein tunneling is the potential step. When the potential exceeds
the rest mass energy, low-energy electrons falling onto the po-
tential step are always transmitted. As a consequence, a strong
electrostatic barrier is not able to confine electrons to one side
of it [5]. As pointed out by Sauter, this effect is quite indepen-
dent of the potential profile and eventually depends only on its
strength [6]. However, due to the unrealizable high potentials re-
quired, Klein tunneling was regarded as a curiosity in the context
of relativistic quantum mechanics.

With the development of experimental methods to isolate
graphene [7] came a renewed interest in Klein tunneling [8–10].
The reason for this interest is that electrons close to the Fermi
energy can be described by the Dirac Hamiltonian for massless
particles [11]. In this material Klein tunneling manifests itself as
the occurrence of perfect transparency of barriers at normal inci-
dence, as predicted by Katsnelson et al. [12,13] and later observed
in experiments [14,15].

In this work we consider a massless Dirac particle moving in
1 + 1 dimensions scattered by a time-dependent potential barrier.
Using the Floquet theory we find the exact transmission ampli-
tudes when the barrier is an arbitrary sharply-peaked function at
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the origin x = 0, approaching the δ-function limit. We also study
the transmission properties of massless Dirac electrons imping-
ing on time-harmonic barriers of finite width and arbitrary shape,
and the exact scattering amplitudes will be compared to those
corresponding to a sharply-peaked function. The comparison will
allow us to establish the conditions under which a finite-width
barrier can be replaced by its δ-function limit. We conclude that
the δ-function potential is a good approximation to more complex
time-dependent barriers whose width is smaller than any other
relevant length scale of the problem.

2. Time-harmonic sharply peaked barrier

In this section we study the scattering of massless Dirac
particles by a time-dependent potential barrier of the form
V (x, t) = g(t)F (x). The spatial part of the potential F (x) is as-
sumed to be sharply peaked at the origin x = 0, approaching the
δ-function limit. Importantly, care must be taken when dealing
with δ-function potentials in the Dirac equation [5,16,17]. The re-
sulting equation is ambiguous if one takes the limit F (x) → δ(x)
from the outset. The origin of the ambiguity is the following. Since
the Dirac equation is linear in momentum, the wave function
itself must be discontinuous at x = 0 to account for the singu-
lar δ-function potential. However, the product of a discontinuous
function and the δ-function is mathematically ill defined. This
ambiguity can be overcome by solving the corresponding Dirac
equation for any arbitrary sharply peaked function and then taking

the δ-function limit with the constraint
∫ 0+

0− F (x)dx = 1 [5].
To obtain the proper boundary condition at the origin, we start

with the 1 + 1 massless Dirac equation
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iψ̇(x, t) =
[
−iσx

∂

∂x
+ V (x, t)

]
ψ(x, t), (1)

with V (x, t) = g(t)F (x). The dot indicates the derivative with re-
spect to time and the Pauli matrix σx acts on the two-component
wave function ψ(x, t). We take units where the speed of light
and h̄ are equal to unity. The appropriate boundary condition
for a time-independent sharply-peaked potential was obtained by
McKellar and Stephenson in Ref. [5] We now generalize this ap-
proach for the time-dependent potential at hand. To this end we
cast (1) in the form

∂

∂x
ψ(x, t) = Ĝ(x, t)ψ(x, t), (2a)

where

Ĝ(x, t) = −σx

[
∂

∂t
+ ig(t)F (x)

]
. (2b)

Eq. (2a) is solved by a Neumann solution

ψ(x, t) = P̂ exp

[ x∫
x0

dx′ Ĝ
(
x′, t

)]
ψ(x0, t), (3)

where P̂ is the spatial ordering operator. Taking the limits x → 0+
and x0 → 0− , only the second term of the operator Ĝ , namely
−iσx g(t)F (x), contributes to the integral. This dominant term in
the exponential commutes at spatially separated points, so we may

set P̂ = 1. Recalling the constraint
∫ 0+

0− F (x)dx = 1 we finally arrive
at the following boundary condition

ψ
(
0−, t

) = exp
[
ig(t)σx

]
ψ

(
0+, t

)
. (4)

In the absence of the potential term (V (x, t) = 0), solutions of
the massless Dirac equation (1) can be written as

ψ±(x, t) = φ±eiE(±x−t), φ± = 1√
2

(
1

±1

)
. (5)

Notice that φ± are eigenvectors of σx since σxφ± = ±φ± . Free so-
lutions are then found to be plane waves traveling to the left or
to the right, as deduced from the corresponding current density
j± = ψ

†
±σxψ± = ±1.

We now turn to our main goal, the study of the effects of
the oscillating barrier on the particle tunneling. The time depen-
dence of the potential will be taken as g(t) = g0 + g1 cosωt here-
after. As in the case of the Schrödinger equation for an oscillating
δ-function potential [18], the Floquet theory allows us to write the
wave function in terms of the free solutions (5) as follows

ψ(x, t) =
∞∑

n=−∞
An(x)e−iEnt, x �= 0, (6a)

where En = E + nω, E is a quasi-energy and n is the sideband
channel index. Since we are interested in electron transmission
across the barrier, we take the following ansatz for the spinors
An(x) in the expansion (6a)

An(x) = in ×
{

δn0eiEnxφ+ + rne−iEnxφ−, x < 0,

tneiEnx−ig0φ+, x > 0.
(6b)

The first phase factor in is introduced for later convenience. Fur-
thermore, the second phase factor exp(−ig0) will cancel the
term exp(iσx g0) after applying the boundary condition (4) since
exp(iσx g0)φ+ = exp(ig0)φ+ . These two phase factor have no ef-
fect on the transmission probabilities |tn|2 but will simplify the
final expression of the transmission amplitudes.
It is straightforward to calculate the time-averaged current den-
sity of the wave function (6)

〈 j〉 = ω

2π

2π/ω∫
0

ψ(x, t)†σxψ(x, t)dt =
{

1 − R, x < 0,

T , x > 0,
(7a)

where

R =
∞∑

n=−∞
|rn|2, T =

∞∑
n=−∞

|tn|2, (7b)

are the reflection and transmission probabilities, respectively.
Inserting the ansatz (6) in Eq. (4), multiplying by exp(iEmt), m

being an arbitrary integer, and time-averaging over one period we
get

δm0φ+ + rmφ− =
∞∑

n=−∞
Jm−n(g1)tnφ+, m = 0,±1, . . . , (8)

where J�(z) denotes the Bessel function of the first kind. After
multiplying from the left by φT− we conclude that rm = 0. Con-
sequently, the reflection probability R vanishes. From (8) with
rm = 0, and recalling the orthonormality condition of Bessel func-
tions, one finally gets

tn = J−n(g1), n = 0,±1, . . . , (9)

which satisfies T = ∑∞
n=−∞ |tn|2 = 1, as expected from the previ-

ous result R = 0.
Several important conclusions can be drawn from the above re-

sults. First, the transmission probability is always unity, indicating
that Klein tunneling persists even if the barrier is harmonically
modulated in time (g1 �= 0). Nevertheless, the transmission prob-
ability through the elastic channel T0 = |t0|2 = J 2

0(g1) < 1 is re-
duced as compared to the static barrier, for which T0 = 1. Second,
the transmission amplitudes given by (9) are independent of the
quasi-energy E and the driving frequency ω. We will see in the
next section that the latter is a consequence of the peculiarities of
having an infinitely narrow barrier.

3. Time-harmonic square barrier

We now consider the scattering from a square barrier of finite
width a. In this situation, the potential appearing in the massless
Dirac equation (1) is

V (x, t) =
{

V 0 + V 1 cosωt, −a/2 < x < a/2,

0, otherwise.
(10)

Solutions of the Dirac equation (1) with the time-harmonic poten-
tial (10) can be again written down as in Eq. (6a), now including
the origin of coordinates x = 0 since the potential is nonsingu-
lar everywhere. Outside the barrier region (|x| > a/2) the spinors
An(x) are expressed as combination of traveling waves

An(x) = in ×

⎧⎪⎪⎨⎪⎪⎩
δn0ei(Enx+V 0a/2)φ+ + rne−i(Enx+V 0a/2)φ−,

x < −a/2,

tnei(Enx−V 0a/2)φ+,

x > a/2,

(11a)

where the phase factors in and exp(±iV 0a/2) are introduced for
later convenience. Inside the barrier region, solutions are of the
form (see, e.g., Refs. [19–21])

An(x) =
∞∑

p=−∞

[
Apei(E p−V 0)xφ+ + B pe−i(E p−V 0)xφ−

]
× Jn−p(V 1/ω), (11b)

where x < |a/2|.
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Fig. 1. Transmission probabilities for (a) the central band, T0, and (b) the two nearest side bands, T±1, as a function of the bare coupling constant g1 = V 1a and different
values of the parameter ωa.
4. Arbitrary barriers of finite width

Since the potential is nonsingular, the wave function ψ±(x, t) is
continuous at x = ±a/2 and we are led to two equations which we
do not write down for brevity. Multiplying them by exp(iEmt), m
being an arbitrary integer, and time-averaging over one period we
get

δm0 =
∞∑

p=−∞
Apei(m−p)ωa/2 Jm−p(V 1/ω), (12a)

tm = i−m
∞∑

p=−∞
Ape−i(m−p)ωa/2 Jm−p(V 1/ω), (12b)

rm = i−m
∞∑

p=−∞
B pe−i(m−p)ωa/2 Jm−p(V 1/ω), (12c)

0 =
∞∑

p=−∞
B pei(m−p)ωa/2 Jm−p(V 1/ω). (12d)

Using the orthonormality properties of the Bessel functions
it is not difficult to show from (12d) that B p = 0. This implies
that backscattering at the discontinuity x = a/2 is suppressed.
From (12c) we conclude that rm = 0 and the reflection coefficient
vanishes (backscattering at x = −a/2 is also suppressed). Taking
into account the orthonormality properties of the Bessel functions
again, one gets Ap = exp(ipωa/2) J−p(V 1/ω) from (12a). Therefore

tm = i−m
∞∑

p=−∞
e−i(m−p)ωa Jm−p(V 1/ω) J−p(V 1/ω)

= J−m

(
2

V 1

ω

∣∣∣∣sin

(
ωa

2

)∣∣∣∣), (13)

where m = 0,±1, . . . and the sum is calculated in Appendix A. In
accordance with the previous result R = 0 for the square barrier,
the transmission probability (7) becomes unity in this case. Simi-
larly to what we found for the sharply-peaked barrier in (9), the
transmission amplitudes are independent of the incoming energy.
However, in this case they depend on the driving frequency.

The comparison of the result (13) with the transmission am-
plitudes for the sharply-peaked barrier given in (9) allows as to
define an effective harmonic coupling for the square barrier

g1,eff(ωa) = 2
g1

ωa

∣∣∣∣sin

(
ωa

2

)∣∣∣∣, (14)

where now g1 = V 1a. Therefore, we come the important conclu-
sion that the scattering properties of harmonic-modulated barriers
can be successfully described by a sharply-peaked barrier with
an effective coupling constant given by (14). The effective cou-
pling constant approaches the bare coupling constant g1 when
ωa 
 1. Fig. 1 shows the transmission probabilities for the central
band, T0 = |t0|2, and the first side bands, T±1, where Tn = |tn|2 =
J 2
n(g1,eff), as a function of the bare coupling constant g1 and dif-

ferent values of ωa. It is quite apparent that the result obtained
for the sharply-peaked potential (9), corresponding to ωa = 0 in
the plots, is a very good approximation to the square barrier even
if ωa is not too small.

The analysis of the scattering solutions for the time-harmonic
square barrier pointed out that backscattering is suppressed at the
edges x = ±a/2. In addition, the transmission amplitudes (13) be-
come independent of the static component of the potential, V 0. All
this suggests that the transmission amplitudes for a time-harmonic
barrier of arbitrary shape

V (x, t) =
{

V 0(x) + V 1 cosωt, −a/2 < x < a/2,

0, otherwise,
(15)

should be exactly the same as those obtained in the previous sec-
tion. The idea behind this conjecture is that any static barrier
can be regarded as a superposition of narrow square barriers and
heights given by V 0(xi), xi being the center of each narrow bar-
rier. But there are not multiple reflections inside the barrier region
since backscattering is suppressed, then transmission should be
independent of the exact shape of the static component of the po-
tential. To validate this conjecture, we look for a solution of the
form (6a). It is a matter of simple algebra to check that the wave
function (6a) with the spinors

An(x) =
∞∑

p=−∞
Apei[E p x−K0(x)] Jn−p(V 1/ω)φ+, x < |a/2|, (16)

satisfies the massless Dirac equation (1) for the potential (15). Here
the function K0(x) is defined from the relation V 0(x) = dK0(x)/dx.
Outside the barrier region the spinors take the form

An(x) = in ×
{

δn0ei[Enx−K0(−a/2)] φ+ , x < −a/2,

tnei[Enx−K0(a/2)] φ+ , x > a/2.
(17)

Finally, imposing the continuity of the wave function at x = ±a/2
and proceeding as in the previous section we arrive at (13). The
conclusion from this analysis is that the static part of the poten-
tial V (x, t) plays the role of a phase factor in the transmission
amplitudes and consequently it does not affect the transmission
probabilities Tn = |tn|2.

5. Conclusions

In summary, we have found exactly the scattering solutions of
massless Dirac electrons subjected to time-harmonic barriers of
arbitrary shape. The Floquet theory allows us to express the cor-
responding transmission amplitudes in terms of Bessel functions.
In all cases the amplitudes are found to be independent of the in-
coming energy and, in the case of the sharply-peaked barrier, also
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of the driving frequency. Most important, we proved that the ap-
proximation of a finite-width barrier by a sharply-peaked one leads
to very accurate results when ωa is not large.

Acknowledgements

This work was supported by MICINN (projects MAT2010-17180
and FIS2009-07880), JCYL (project SA226U13) and USAL (project
KBBB). C.G.-S. acknowledges financial support from Comunidad de
Madrid and European Social Foundation.

Appendix A. Graf’s addition theorem of Bessel functions

Let us consider a triangle with sides x, y and z. Let ϕ be the
angle between sides x and y. Similarly, let Ψ be the angle between
sides x and z. Graf’s addition theorem of Bessel functions states
that (see, e.g., p. 27 of Ref. [22])

J−m(z) e−imΨ =
∞∑

p=−∞
J p−m(x) J p(y) eipϕ. (A.1)

We now take x = y = V 1/ω and ϕ = ωa. From simple trigono-
metric considerations we get z = (2V 1/ω)| sin(ωa/2)| and Ψ =
(π − ωa)/2 in this case. Therefore exp(−imΨ ) = i−m exp(imωa/2)

and (A.1) leads to Eq. (13).
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