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We investigate the nonequilibrium transport properties of a coupled quantum dot system connected in 
parallel to two leads, including electron–vibron interaction. It is known that in the absence of interaction 
the system supports a bound state in the continuum. This state is revealed as a Fano antiresonance in the 
transmission when the energy levels of the dots are detuned. Using the Keldysh nonequilibrium Green’s 
function formalism, we find that the occurrence of the Fano antiresonance arises even if the electron–
vibration interaction is taken into account. We also examine the impact of the coupling to the leads in 
the linear response of the system. We conclude that the existence of bound states in the continuum 
in coupled quantum dot systems is a robust phenomenon, opening the possibility of its observation in 
experiments.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Double quantum dot (DQD) systems are artificial ultra small 
structures that share electronic properties with diatomic molecules 
[1,2]. Due to the advances in fabrication techniques, many aspects 
of the physics involved at the quantum level of few-electron sys-
tems can by now be tested using DQDs. For this reason, DQDs are 
emerging as versatile systems to explore a variety of fundamental 
physics phenomena, such as Kondo states [3–6], quantum inter-
ference [7,8], Coulomb blockade [9–11], Fano effect [12–14] and 
correlation-induced resonances [15,16].

The similarity of artificial nanostructures, like semiconductor 
superlattices and quantum dots, and atomic systems paved the 
way to experimentally validate several theoretical predictions for-
mulated much earlier than the advent of nanotechnology. A re-
markable example is the occurrence of bound states in the contin-
uum (BICs). Shortly after the formulation of quantum mechanics, in 
1929 von Neumann and Wigner constructed a spatially oscillating 
potential that supported a bound state (square integrable) above 
the potential barrier [17]. These exotic states were regarded as a 
mere theoretical curiosity until 1992, when Capasso et al. mea-
sured the absorption spectrum at low temperature of a GaInAs 
quantum well with Bragg reflector barriers produced by a AlI-
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nAs/GaInAs superlattice [18]. A well-defined line at 360 meV in the 
spectrum was attributed to electron excitations from the ground 
state of the quantum well to a localized level above the AlInAs 
band edge. Nevertheless, Plotnik et al. claimed that this state is 
not a true BIC but a defect mode residing in the gap [19]. More 
recently, Albo et al. characterized III–V–N (diluted nitrides) quan-
tum wells by intersubband photocurrent spectroscopy. They stated 
that these samples exhibit signatures of BICs resulting from the 
hybridization of nitrogen-related defect states and the extended 
states of the conduction band [20].

Aiming to introduce a physical realizable system to reveal the 
existence of BICs in transport experiments, we have recently stud-
ied a parallel DQD system [21]. The coupling between the BIC and 
the continuum energy states was controlled by detuning the en-
ergy levels of each quantum dot using gate voltages. We showed 
that the transmission probability displays a Fano antiresonance 
profile [22] at the energy of the BIC. More important, when the 
gate voltages are modulated harmonically in time, the energy of 
the resonance can be continuously shifted by varying the driving 
frequency. We predicted that the conductance at low temperature 
presents a minimum when the BIC crosses the Fermi level by vary-
ing the driving frequency. The notion of BICs sustained by systems 
subjected to time periodic fields has been further investigated in 
Refs. [23] and [24]. However, it is still an open question to what 
extent interactions would mask the effect in a real experiment. 
Žtiko et al. have shown that the so-called dark states in parallel 
DQD systems, corresponding to BICs discussed in Ref. [21], are ro-
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Fig. 1. Schematic diagram of the DQD system coupled in parallel to left and right 
leads. Two gate voltages, V g1 and V g2, control the energy of the local level of each 
dot.

bust against electron–electron interactions, at least in the Kondo 
regime [25].

In this work we study the impact of electron–vibron interaction 
on transport properties when the system supports a BIC, using the 
Keldysh nonequilibrium Green’s function formalism [26]. Specifi-
cally, we consider a DQD connected in parallel to two leads and 
assume that the electron interacts with a vibrational degree of 
freedom localized at each dot. We examine the spectral function, 
the electric current through the DQD system and the differential 
conductance. We study different configurations of the energy lev-
els of the dots as well as the role of the contacts between the dots 
and the leads. When the symmetry of the system is broken (dif-
ferent energy levels of the dots or asymmetric couplings to the 
leads), the spectral density and the differential conductance reveal 
the occurrence of a BIC in the energy spectrum. This result is not 
substantially affected by the electron–vibron coupling and we con-
clude that transport experiments in DQD systems could uncover 
these exotic states.

2. Model

We consider two quantum dots forming a DQD system, con-
nected to left and right leads by tunnel couplings, as shown 
schematically in Fig. 1. The bias voltage between the leads, V , is 
given by eV = μL −μR , where μα is the chemical potential of the 
lead α = L, R . Only one energy level in each dot is assumed rel-
evant and electron–electron interaction is neglected. The energy 
of the local level can be tuned by gate voltages, V g1 and V g2, 
depicted in Fig. 1. In addition, the dots are far apart and direct 
tunneling between the dots is suppressed. The electron interacts 
with a local vibration mode at each dot and, for simplicity, we as-
sume the same frequency ω0 for both modes.

The Hamiltonian describing the whole system can be written 
as H = H0 + He-leads + He-vib. H0 describes the dynamics of the 
noninteracting system (we set h̄ = 1 hereafter)

H0 =
∑

i

(
εid

†
i di + ω0a†

i ai

)
+

∑
k,α

εα,kc†
α,kcα,k, (1)

where the index i = 1, 2 runs over the quantum dots and α = L, R
indicates the lead. Here c†

α,k (cα,k ) denotes the creation (annihi-
lation) operator of a conduction electron in the semi-infinite lead 
α with crystal momentum k and energy εα,k . Similarly, d†

i (di ) is 
the creation (annihilation) operator of an electron in the dot i with 
energy εi . Finally, the creation (annihilation) operator of a local vi-
bration mode in the dot i with frequency ω0 is denoted by a†

i (ai ).
The dots are tunnel coupled to both leads, as shown schemati-

cally in Fig. 1. Therefore, the corresponding Hamiltonian reads

He−leads =
∑

V i,k,αc†
α,kdi + H.c., (2)
i,k,α
where H.c. stands for Hermitian conjugate. We assume a Holstein-
type coupling between the electron and the vibron [27]

He−ph = λ
∑

i

(
a†

i + ai

)
d†

i di . (3)

For simplicity we take the same coupling constant λ in both dots.
We now apply the Lang–Firsov nonperturbative canonical trans-

formation H̃ = eS He−S , where the operator S is defined as S =
(λ/ω0) 

∑
i(a

†
i −ai)d

†
i di [28]. The transformed Hamiltonian takes the 

form H̃ = H̃0 + H̃ int, where the transformed noninteracting term is 
given as

H̃0 =
∑

i

ε̃id
†
i di +

∑
k,α

εα,kc†
α,kcα,k, (4)

where ̃εi = εi − gω0 and g = λ2/ω2
0 is the Huang–Rhys factor. The 

resulting interaction Hamiltonian H̃ int is similar to He−leads given 
in Eq. (2), replacing V i,k,α by V i,k,α X with X = exp

[
(λ/ω0)(a

†
i −

ai)
]
. The canonical transformation is exact but it does not diag-

onalize the Hamiltonian. In other words, H̃ int contains products 
of boson and fermion operators. Since we are dealing with lo-
calized vibration modes, it is reasonable to replace the opera-
tor X by its expectation value 〈X〉 = exp [−ξ(T )/2], where ξ(T ) =
g (2Nvib + 1), Nvib = 1/ [exp (βω0) − 1] and β = 1/kB T [29,30]. 
Defining Ṽ i,k,α = V i,k,α〈X〉, the transformed interaction Hamilto-
nian is approximately taken as

H̃ int =
∑
i,k,α

Ṽ i,k,αc†
α,kdi + H.c. (5)

This approach is valid when the coupling between the DQD system 
and the leads is weaker than the electron–vibron coupling, namely 
|Ṽ i,k,α| � λ.

3. Spectral function and differential conductance

Nonequilibrium transport properties of an interaction region 
coupled to two leads can be obtained with the help of the Keldysh 
Green’s function technique [31]. The magnitudes of interest are the 
spectral matrix

A(ω) = i
[

Gr(ω) − Ga(ω)
]
, (6a)

along with the spectral function A(ω) = Tr [A(ω)] /2, the transmis-
sion coefficient

T (ω) = Tr
[

Ga(ω)�R Gr(ω)�L(ω)
]
, (6b)

and the electric current

I = e

2h

∫
dω Tr

{[
f L(ω)�L − f R(ω)�R

]
A(ω)

+ i
(
�L − �R

)
G<(ω)

}
, (6c)

where fα(ω) = 1/ {exp [β(ω − μα)] + 1}−1 is the Fermi–Dirac dis-
tribution function of the lead α. The tunnel coupling of the DQD 
system to both leads is encoded in the matrices [32]

�L = �0

(
1

√
a√

a a

)
, �R = �0

(
a

√
a√

a 1

)
. (7)

Here �0 and a are phenomenological parameters describing the 
different coupling of each dot to both leads. This coupling corre-
sponds to the configuration studied in Ref. [12]. Once the current 
is computed, one can obtain the dimensionless differential con-
ductance as G = (dI/dV )/G0, where G0 = 2e2/h is the quantum of 
conductance.
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The various Green’s functions in the above expressions have the 
usual meaning in the nonequilibrium Keldysh formalism [26]. They 
can be calculated using standard techniques and for brevity we 
only quote the main results [30,32]. The lesser and greater Green’s 
functions can be expressed as

G<(ω) =
∞∑

n=−∞
LnG̃<(ω + nω0),

G>(ω) =
∞∑

n=−∞
LnG̃>(ω − nω0), (8a)

where at finite temperature

Ln = e−ξ(T )+nβω0/2 In
(√

ξ2(T ) − g2
)
, (8b)

In(z) being the modified Bessel function of integer order [33], and 
at zero temperature

Ln =
{

e−ξ(0)gn/n! if n ≥ 0,

0 if n < 0.
(8c)

The dressed lesser and greater Green’s functions can be calcu-
lated from the Keldysh equation G̃<(>)(ω) = G̃r(ω)	̃<(>)(ω)G̃a(ω), 
where the self-energies are given by

	̃<(ω) = i eξ(T )
[

f (e)
L (ω)�L + f (e)

R (ω)�R
]
,

	̃>(ω) = −i eξ(T )
[

f (h)
L (ω)�L + f (h)

R (ω)�R
]
, (9)

with f (e)
α (ω) = fα(ω) and f (h)

α (ω) = 1 − fα(ω). The dressed re-
tarded and advanced Green’s functions are obtained as

G̃r(ω) = 1

P (ω)

(
ω − ε̃2 − 	̃22 	̃12

	̃21 ω − ε̃1 − 	̃11

)
,

G̃a(ω) = G̃r(ω) + G̃<(ω) − G̃>(ω), (10)

with P (ω) = (ω − ε̃2 − 	̃22)(ω − ε̃1 − 	̃11) − 	̃12	̃21 and 	̃ =
(i/2) exp [−ξ(T )]

(
�L + �R

)
. Finally, the retarded and advanced 

Keldysh Green’s functions can be calculated from

Gr(ω) =
∞∑

n=−∞
Ln

{
G̃r(ω − nω0) − 1

2
G̃<(ω + nω0)

+ 1

2
G̃<(ω − nω0)

}
,

Ga(ω) =
∞∑

n=−∞
Ln

{
G̃r(ω − nω0) + 1

2
G̃<(ω + nω0)

+ 1

2
G̃<(ω − nω0) − G̃>(ω − nω0)

}
. (11)

Once the various Green’s functions are calculated, the magni-
tudes of interest (6) can be readily obtained.

4. Results

The main emphasis of our analysis is to evaluate the impact 
of the electron–vibron coupling on the transport properties of the 
DQD system and the role of the leads. To avoid the profusion of 
free parameters, we set μL = 0 hereafter. We take ω0 as the unit 
of energy in our numerical calculations.
Fig. 2. Dimensionless differential conductance for symmetric (a = 1, red solid line) 
and asymmetric (a = 0.5, blue solid line) couplings to the leads, at kB T = 0.01 and 
in absence of electron–vibron coupling (λ = 0). The energy levels of the dots are 
the same (ε = 0) and �0 = 0.2. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)

4.1. Non-interacting DQD system

To gain insight into the occurrence of BICs in the DQD system, 
we consider the non-interacting case by setting λ = 0 for the mo-
ment. In this subsection we take ε1 = −ε2 ≡ ε to obtain simpler 
expressions, although more general situations can be handled in 
the same way. A lengthy but straightforward calculation yields the 
following expression for the transmission coefficient (6b)

T (ω) = 4a�2
0ω

2

D(ω)
, (12a)

with

D(ω) =
(
ω2 − ε2

)2 + �2
0

2

[
ω2

(
1 + 6a + a2

)
+ ε2(1 − a)2

]

+
[

�0

2
(1 − a)

]4

. (12b)

The transmission coefficient vanishes at ω = 0 except if ε = 0
and the coupling to the leads is symmetric (a = 1). In this particu-
lar case the transmission coefficient presents a Lorentzian shape

T (ω) = 4�2
0

ω2 + 4�2
0

, (12c)

of width 2�0. Therefore, unless the system is finely tuned (ε = 0
and a = 1), in general the transmission coefficient shows a marked 
dip at ω = 0. For instance, when the coupling to the leads is sym-
metric (a = 1) but the energy levels of the dots are detuned (ε 
= 0) 
one obtains

T (ω) = ω2

ω2 + ε4/4�2
0

(12d)

for |ω| < ε. We notice that the transmission coefficient displays a 
Fano antiresonance profile of width ε2/2�0. Similarly, when the 
energy levels are the same (ε = 0) but the coupling to the leads is 
asymmetric (a 
= 1), the transmission shows again a Fano antires-
onance around ω = 0, namely T (ω) ∼ ω2/ 

(
ω2 + γ 2

)
where now 

the width is given by γ = �0(1 − a)2/

√
8
(
1 + 6a + a2

)
.

The occurrence of a Fano antiresonance in the transmission 
also reflects itself in the differential conductance. Fig. 2 shows the 
results for tuned levels (ε = 0) and symmetric or asymmetric cou-
plings to the leads. If this coupling is exactly the same for both 
quantum dots (a = 1), the differential conductance displays a single 
peak around eV = 0. However, in a more general situation when 
the coupling is not the same (a 
= 1), the differential conductance 
displays a well-defined dip at eV = 0, in perfect agreement with 
the Fano antiresonance observed in the transmission coefficient.

In the non-interacting DQD system, the spectral function A(ω)

can also be calculated analytically

A(ω) = (1 + a)�0
[
ω2 + ε2 + 1

(1 − a)2�2
0

]
, (13a)
D(ω) 4
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where D(ω) is given in (12b). It is then found that A(ω) presents 
Lorentzian profiles close to ω = 0 in all cases. For instance, when 
ε = 0 and a 
= 1 one easily gets A(ω) ∼ γ / 

(
ω2 + γ 2

)
if |ω| < �0, 

where γ was defined above. More interesting results arise when 
the coupling to the leads is the same for both quantum dots 
(a = 1). Taking |ω| < ε < �0, the spectral function is approximately 
given as

A(ω) � 2�0

ω2 + 4�2
0

+ ε2/2�0

ω2 + (ε2/2�0)2
. (13b)

The spectral function is the sum of two Lorentzian profiles, orig-
inated from the superposition of two states. One of these states 
is strongly coupled to the continuum, giving rise a wide peak of 
width 2�0. However, the other state is only weakly coupled to 
the continuum since the corresponding level broadening ε2/2�0 is 
small when ε < �0. When the energy levels of the quantum dots 
are the same (ε → 0), the spectral function becomes

A(ω) � 2�0

ω2 + 4�2
0

+ πδ(ω) . (13c)

In this case the spectral function approaches a δ-function, in-
dicating the existence of a truly bound state with energy ω = 0
located at both quantum dots [21]. In other words, the localized
state becomes effectively decoupled from the continuum states but 
its energy lies within the band (BIC).

To conclude the analysis of the non-interacting DQD system, 
let us stress that the system supports BICs that can be detected 
by studying its transport properties. The transmission coefficient 
generally presents a Fano antiresonance profile except if the pa-
rameters are finely tuned, namely when ε = 0 and a = 1 it displays 
a Lorentzian shape. Correspondingly, the differential conductance 
shows a marked dip when the Fermi level matches the energy of 
the BIC.

4.2. Interacting DQD system

We now turn to our main goal, the effects of the electron–
vibron coupling on the BICs discussed in the previous section. We 
apply the methodology presented in Section 2 to symmetric and 
asymmetric configurations of the DQD system when λ is finite. For 
concreteness we take λ = 0.5 in the numerical calculations.

Inelastic scattering events due to excitation and de-excitation 
of localized phonons are revealed as side peaks in both the trans-
mission coefficient and the spectral function. Fig. 3 shows the re-
sults for different configurations of DQD systems. In all cases the 
transmission coefficient (solid blue lines) and the spectral func-
tion (dashed red lines) present the zero-phonon line and side 
peaks due to emission or absorption of phonons. In the perfectly 
symmetric configuration (a = 1 and ε1 = ε2), both the transmis-
sion coefficient and the spectral function are similar, as seen in 
Fig. 3(a). These magnitudes present a Lorentzian zero-phonon line 
whose width is roughly 2�0, as in the noninteracting case given by 
Eq. (13b). According to Eq. (13c), in the absence of electron–vibron 
interaction the spectral density displays an additional δ-function 
peak when |ε1 − ε2| goes to zero. This singularity can not be ob-
served in Fig. 3(a) due to the finite resolution of the numerics, as 
expected. However, a small imaginary part added to the energy of 
the quantum dots widens the BIC, which can be now detected as 
a narrow peak in the spectral density (see inset of Fig. 3). This 
leads to the conclusion that the electron–vibron interaction does 
not mask the main features of the BICs in the spectral density.

When the DQD is asymmetric (a 
= 1 and/or different quan-
tum dot energies) the transmission coefficient vanishes at ω =
(̃ε1 + ε̃2)/2 = (ε1 + ε2)/2 − λ2/ω0. If only the couplings to the 
leads are different but the energy levels of the quantum dots are 
Fig. 3. Transmission coefficient (solid blue lines) and spectral function in arbitrary 
units (dashed red lines) for symmetrically (left panels) and asymmetrically (right 
panels) connected DQD systems. System parameters are �0 = 0.2, λ = 0.5, kB T =
0.01 and ω0 = 1. In all cases ε1 = |ε2| = λ2/ω0. The inset shows an enlarged view 
of the spectral density when a small imaginary part is added to the energy of the 
quantum dots. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)

the same, both the transmission coefficient and the spectral func-
tion present similar trends, except for the vanishing of the latter 
at ω = 0, as seen in Fig. 3(b). On the contrary, if the energy lev-
els of the quantum dots are different (lower panels of Fig. 3), the 
spectral function vanishes at ω = −λ2/ω0 while the transmission 
coefficient is maximum. This behavior is found to be independent 
of the symmetry of the coupling to the leads.

Further insight into the behavior of the BICs is obtained from 
the differential conductance. Fig. 4 shows the results for differ-
ent configurations of the DQD system. We observe the occurrence 
of the expected side-bands discussed above and a small energy 
shift λ2/ω0 = 0.25 due to the renormalization of the electron en-
ergy. Close to the (renormalized) band centre the dimensionless 
differential conductance presents a marked dip except if the sys-
tem is perfectly symmetric (a = 1 and ε = 0), as seen in Fig. 4(a). 
This behavior is in perfect correspondence to what we found in 
noninteracting systems (see Fig. 2). The dimensionless differen-
tial conductance exactly vanishes at the renormalized band centre 
when the quantum dots are detuned (see lower panels of Fig. 4). 
We have found numerically that the dip cannot be resolved above 
a threshold temperature of the order of T th � 0.06ω0/kB with 
our chosen parameters. Taking ω0 = 5–50 meV as typical values 
of phonon energy in these DQD systems [34], the threshold tem-
perature is found to be T th = 0.6–6 K. Therefore, the signatures of 
BICs in the differential conductance should be observable even at 
temperatures slightly above the liquid helium temperature.

In our study we have assumed that interdot tunneling is neg-
ligible. Therefore, tunneling from one dot to the other is always 
an indirect process since it can only take place through the leads. 
In the literature, however, direct interdot tunneling is often taken 
into account. This amounts to include the term t(d†

1d2 + d†
2d1) in 

the Hamiltonian (1), where t is the interdot hopping energy [32]. 
Dashed lines in Figs. 4(b) and 4(d) show the dimensionless dif-
ferential conductance when the interdot tunneling is not negligi-
ble and the hopping energy is t = 0.4. Notice that this hopping 
energy is also renormalized after the Lang–Firsov transformation, 
t̃ = t exp[−ξ(T )]. The rest of parameters correspond to symmet-
ric coupling to the leads (a = 1) and ε1 = ±ε2 = 0.25. We observe 
that the dip at the band centre that signals the occurrence of a BIC 
is smeared out if t is finite. Therefore, we are led to the conclusion 
that the interdot tunneling should be as small as possible to detect 
to occurrence of BICs in nonequilibrium transport experiments.
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Fig. 4. Dimensionless differential conductance for symmetrically (left panels) and 
asymmetrically (right panels) connected DQD systems. System parameters are ε1 =
|ε2| = 0.25, �0 = 0.2, λ = 0.5, kB T = 0.01 and ω0 = 1. Dashed lines of the right 
panels shows the results when the interdot tunneling is not negligible (hopping 
energy is t = 0.4). The rest of parameters are indicated in the legends.

5. Conclusions

In conclusion, we studied the nonequilibrium transport proper-
ties of a DQD system connected in parallel to two leads. Electrons 
interact with a local vibration mode of each quantum dot. In the 
absence of interaction, the system supports a BIC, which reveals it-
self as a Fano antiresonance in the transmission coefficient [21]. 
When the electron–vibron interaction is taken into account, we 
found that the main features of the spectral function and the trans-
mission coefficient remain, besides the occurrence of well-defined 
side-bands. In most cases the transmission coefficient vanishes at 
the band centre, signaling the occurrence of a BIC. This feature is 
observed in the differential conductance, which vanishes close to 
the Fermi level of the source lead if the energy levels of the quan-
tum dots are detuned.

Regarding the experimental validation of the effects of the BICs 
on the nonequilibrium transport in DQD systems, we found that 
temperature should not exceed the liquid helium temperature for 
typical values of the parameters. Above this temperature the dip 
in the differential conductance indicating the occurrence of a BIC 
is smeared out. We also studied the effects of the interdot tun-
neling and concluded that it should be small to reveal the BICs. 
This implies that the dots should be far apart. Another important 
magnitude to be considered in an experiment is the Huang–Rhys 
parameter. In our study we set g = 0.25 and found that electron–
vibron interaction does not mask the effect. This value is an order 
of magnitude larger than the Huang–Rhys parameter found in InP 
dots of radius 1.2 nm [35]. Therefore, we are confident that trans-
port experiments in DQD systems could help to understand the 
nature of the BICs.
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