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Phase coherence in tight-binding models with nonrandom long-range hopping
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The density of states, even for a perfectly ordered tight-binding model, can exhibit a tail-like feature at the
top of the band, provided the hopping integral falls off in space slowly enough. We apply the coherent potential
approximation to study the eigenstates of a tight-binding Hamiltonian with uncorrelated diagonal disorder and
long-range hopping, falling off as a powgr of the intersite distance. For a certain interval of hopping-range
exponentu, we show that the phase-coherence length is infinite for the outermost state of the tail, irrespec-
tively of the strength of disorder. Such an anomalous feature can be explained by the smallness of the
phase-space volume for the disorder scattering from this state. As an application of the theory, we mention that
ballistic regime can be realized for Frenkel excitons in two-dimensional molecular aggregates, affecting to a
large extent the optical response and energy transport.
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[. INTRODUCTION matically differs from what has been observed so far in the
majority of localization problems.

The atomic orbital framework used to characterize elec- The inverse participation ratio criterion, even though be-
tronic states in solids commonly deals with short-range hoping a robust way to detect the Anderson localization, does
ping (SRH). For such situation it is well known that any not completely capture the underlying structure of the wave
disorder leads to randomization of the wave-function phasgunctions. In particular, such criterion does not seem to dis-
on some finite spatial scale known as phase-coherence lengiiguish the case of pure Anderson transition from that in
(PCL). Beyond this scale, roughly equal to the mean freqyhich the Anderson transition is accompanied by a transition
path, the charge transport has a diffusive form until the cofom the diffusive to the ballistic regime. The realization of
herent backscattering causes Anderson Iopallzétiﬁne Na-  the second scenario would imply that not only the localiza-
ture of states to be localized or extended is governed by thg,, jength, but also the PCL becomes infinite at the transi-

dimensionality of the systemExtensive studies have been tion point. To best of our knowledge the PCL has never been

carried out to establish the validity limits of the statement .
that all states in one-dimensiondID) tight-binding models gddressed S0 fa.r for LF\?H.modeIs.._At the same tl_me the phys
ics of the diffusive-ballistic transition is much simpler than

re localiz riginally formul for th f diagonal o o . . .
are localized, originally formulated for the case of diago athat of the localization transition since it deals essentially

uncorrelated disorder and SRHRecently, the absence of ith the sinal icle G s f : d di
extended states in low-dimensional systems was questiond§t the single-particle Green's function averaged over dis-
order realizations.

in Refs. 4—7 foruncorrelated diagonal disordeaind nonran- i ) i . .
dom long-range hopping-RH) falling off as some power of The aim of the present paper is to investigate the single-

the intersite distance. To be specific, the authors considereRfticle properties of the Hamiltoniail). In particular, we
the model Hamiltonian demonstrate that in the interval @f, coinciding with that

reported in Ref. 6 for the existence of extended states, the
PCL diverges at the upper band edge, even at moderate de-
H:; 8n|”><”|+§n JnmlN)(m, (1) gree of disorder. The task is fulfilled by making use of the
’ coherent-potential approximatiofCPA), known to be the

where J,,=1/n—m|#, and e, are uncorrelated random best available self-consistent approximation for the single-
variables distributed according to the same distribution funcparticle Green’s functiof The paper is organized as follows.
tion p(e,). (Energy is measured in units of the nearest-In Sec. Il we present some preliminary considerations of the
neighbor hopping.The size scaling of the inverse participa- disorder-free system, which are necessary for a better under-
tion ratio was investigated both numerically and with the usestanding of the present paper. The body of the paper is Sec.
of supersymmetric method for disorder averaging combinedil, where we present the CPA approach to study the single-
with the renormalization group. The outcome indicated thaparticle Green'’s function averaged over disorder realizations.
for a d-dimensional lattice d=1,2), provided d<gu In particular, we discuss in detail its weak-disorder
<3d/2, the uppermost states were subjected to the Andersamsymptotic solution. Then we proceed on to physical quanti-
localization-delocalization transition with respect to the dis-ties such as band edge, spectral density, density of states
order magnitude, remaining delocalized for not very strongDOS), and PCL. The results of numerical simulations are
disorder. Such anomalous occurrence of extended states distmmarized in Sec. IV, where we compare them to the ana-
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lytical predictions of the preceding section. We conclude Besides the unusual form of the DOS, the LRH results not
with a brief discussion of the relevance of the obtained rein exponential but rather a power-law localization of states.
sults in Sec. V. Previously found in numerical simulatiofghis feature can
be easily understood considering a nontypical site energy
fluctuation, i.e., the one with site energy essentially out-
side of the band. Then, the first order of perturbation theory
Without disorder £,=0) the eigenstates of Hamiltonian with respect to the off-diagonal part of the Hamiltoniéin
(1) are plane waves W|th quasimomema\Nithin the fiI‘St y|e|ds the Corresponding wave functiorﬂ)nm: 5nm
Brillouin zone. The corresponding eigenenergies are given. j /¢ which falls off as 1/n—m|* upon increasing the
by distance from the site. Remarkably® ., does not vanish
outside some finite real-space interval, as it would be for a
perturbative wave function in the case of SRH. This means
that for the LRH the perturbation theory provides an approxi-
mate solution valid in all space, and no higher-order correc-
where summation runs over sites of a regulatimensional  tions are needed as long ks,|>|J.,|. For a generic rela-
lattice (d=1,2). The lattice constant is set to unity. To dealtion betweene, andJ,,,, the omitted orders will correct the
with a bounded spectrum we assume-d throughout the  coefficient of the 1h—m|* dependence and introduce some
paper. The complete account for all terms in the S@mis  new terms falling off faster than [b'— m|“. Fore,, inside the
important in the neighborhood of the upper band edge, whergand, both power-law and exponentially falling-off compo-
the LRH strongly modifies the dispersion. Specifically, nents in the wave function will appear. Their form can be
aroundk =0 the dispersion relatio2) is approximately as deduced from calculations presented in the Appendix for the
follows: case of 1D system.

Il. DISORDER-FREE SYSTEM

eik~n

E = l
“ rgo In|#

)

E.=E,— A k|#~d-B k|2+0O(|k|%). 3
= EBo~Ad(p)K )l (k5. @ Ill. COHERENT-POTENTIAL APPROXIMATION

Here, Eq, Ag(u),Bg(1) are known positive constaritS.
Providedu<d+ 2, the second essentially nonquadratic term
in Eq. (3) dominates for smallk| over the next quadratic
term, and vice versa. We therefore cast expang®nn a
shorthand form

The CPA is a reliable and efficient method to study the
disorder-averaged DOS and the phase coherence between
wave functions for different members of the random
ensemblé:’° These characteristics can be extracted from the
disorder-averaged single-particle propagator

Ex=Eg— Cqlp)|k|"a"), (4) L
where G(w)= f IT denp(en) =5 v
Colm)=Ag(p),  va(p)=p—d for p<d+2, Unless otherwise specified, the energy variablevill have
an infinitesimal positive imaginary part. In the framework of
Co(w)=Ba(p), vg(p)=2 for p>d+2. (5 P gihery P

CPA, quantity(7) is approximated in a self-consistent way to

preserve its analytic properties and deliver the correct limit-
ing behavior as either the disorder strength or the hopping
amplitude tends to zero. Namely, it is argued that a good

Straightforward calculation of the DOS in the vicinity of
the upper band edge yields a power-law behavior

p(w)~ag(p)|o—Eq|¥ am -1, (63) approximation for the single-particle propagator is to treat its
disorder-generated self-energy as a site-diagonal quantity. In
Here, the constant factary(w) is given by other words, averagé?) is evaluated by replacing the site
energye,, by a coherent potentiat(w),
Sy [Calp)] ¥ra)
ag(u)= ' (6b)

(2m)d va(p)

Gy(w)= ®

. . . . . o—o(w)—E’
with Sy being the area of thd-dimensional unit sphereve

setS;=2). It should be noticed that the DO®a) is very
sensitive to the value gf: the exponentl/vy(x)—1 in Eq.
(6a) has the familiar Van Hove formd(—2)/2 for u>d+2
and the less usual one, involving the dependence. pfor
the opposite inequality. Furthermore, as<3d/2, both the
DOS and its derivative vanish at the enefy, indicating

The choice ofo(w) should be such to compensate on aver-
age scattering from a single site. The resulting self-
consistency condition readsee, e.g., Ref. 10

en—o(w)

f denP(en) T 1o = 5 (@) 1Gm(@)

0, 9

that this part of the energy spectrum is weakly populated by

the states. In spite of a qualitative resemblance of a disordewhere G,,(w) is the site-diagonal element of the CPA
induced band tail, in the model under consideration this is &reen’s function.

purely kinetic feature, stemming from the long-range nature We adopt for the random site energies the distribution
of hopping. uniform within symmetric interval[ —A,A]. For such
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p(e,), the integral in Eq(9) can be evaluated explicitly, and —Eo—o(w)[Y*«*). The imaginary part of the considered

we get the self-consistency equation in the form term is nonzero in the limit of vanishing disordpe(w)
=0], in agreement with the singular or tail-like DOS of Eq.
1 1+[o(0)+A]G(w) (6a). The second term in Eq13) is areal constant repre-

=Gn( ). (10 senting the part of the site-diagonal propagator whose depen-

dence on energy is smooth near the upper band edge; the
major contribution comes from the highler The exact value

28 M+ To(@)— AGm(w)

The resulting CPA propagator will be studied numerically in
Se_c. V. Ir_1 the rest of the present section, we de_rl\(e an angsg by(w) can be found via numerical summation over all
lytic solution of the theory in the weak-disorder limit. As an momenta inG, ()

outcome, the asymptotic formulas for the observable quanti- Accountingm}or fhe constartty() in the weak-disorder

geCSL rﬁ'ﬂ]ﬁg fﬁg?ﬁggge energy, spectral density, DOS, arE‘Ialf-consi:stency equatidqi?) is equivalent to a shift of both
' ' the band-edge position and the self-energy. Namely, upon
_ transformation E{=Ey+(1/3)A%by(x), o' (w)=o0(w)
A. Weak-disorder self-energy —(1/3)A%by(w), Eq. (12 takes a form as if only the low-
To access the weak-disorder limit of CPA we perform amomenta states were participating in the disorder scattering:
formal smallA expansion in Eq(10) retaining terms up to

AZ?. Then the self-consistency condition acquires the form ) A? mag(p)[w—Eq— o' (w)]¥raW 1
o'(w)=—= - (14
3 si d/vy(w)]
A? Gnn(w)
o(w)=— (1) While Ej—E, is a mere shift the uppermost states acquire

3 2" . .
[1+Gin(w)o(w)] due to the coupling to the continuum of remote low-energy
The termGp,(w)o(w) in the denominator can be neglected (high-momenta states, the broadening effect, accounted
because eventually it turns out to be proportional to a posithrough Eq(14), originates from the mixing of nearby states

tive power ofA<1. Thus the weak-disorder equation to be at the band edge.
analyzed reads The solution of Eq(14) turns out to be extremely sensi-

tive to the value of the exponept. In particular, for a fixed

A? energyw=E}, it follows that either
o(@)= 5 G(w). (12 oo
A% mag(p) va(m)/[2vg(w) —d]
Both of the two approximative steps yielding Ef2) do not o' (Ey)= (159

introduce any spurious singularities around the band edges, 3 sinmd/vy(u)]

e.g., such as those emerging after truncation of the cumulargyy

series for the Green'’s functioisee Ref. 10 Such preserva-

tion of the analyticity in the vicinity of the band edge is o'(Eg)=0. (15b)

guaranteed by the full account for self-energy in the local ) ) ) _

Green’s function entering the equation. We notice that the he former expression can be considered as being valid only

coefficient (1/3)\2 in Eq. (12) coincides with the site-energy at ©>3d/2 where vy(u)>d/2, because otherwiséat u

variance, the second centered momenpgf,). From this <3d/2) the exponenty(u)/[2vq(u) —d] becomes nega-

holds for any distribution functiorp(e,) decreasing fast latter expression should be used.

enough at larges,, (specifically, if theMth-order centered From the presented arguments it follows that the renor-

moment scales asM). malized self-energy remains finite at=E( varying with
Weak disorder mixes only a small part of otherwise well-energy on the scale- A%4()/2»at)=d) provided > 3d/2.

defined-momenta states within an energy interval of the orThe complete solution of Eq(14) in this case looks rather

der of the effective broadeningIm o(w). This facilitates involved, but for the forthcoming, qualitative considerations

evaluation of the site-diagonal propagator entering @g).  Pased on disorder scaling

Namely, for energies close to the upper band edge only small , ol )12l ) —dl

k will contribute to G,,(w)=2=,Gy(w). Becauseo(w) is o' ()~ A2tz =d] (163

small due to the weakness of disorder, while the detuningyii suffice. Regarding the range af<3d/2, the renormal-
»—E, can be made small close enough to the upper bangey self-energy vanishes faster than linearly @sap-

edge, the site-diagonal Green's function can be found as  54cheds! . The solution in this case can be obtained in a

mag(w)[w—Eq— o(w)]¥va()—1 closed form

St 70l vg( )] *bali). A2 mag(p)

’ r\dly -1
(13) g (w)~?m(w EO) a(r) . (l6b)
Here, the first ternfin which ay(u«) is given by Eq.(6b)]
comes solely from the small momenta and does not depend Having derived the CPA self-energy, at next step we
on any momentum cutoff. The magnitude of the contributingpresent analytical results concerning observable quantities,
k can be estimated from the dispersion 1&® as k~|w namely band-edge energy, spectral density, DOS, and PCL.

Gunl(w)~

104204-3



BALAGUROV, MALYSHEV, AND ADAME PHYSICAL REVIEW B 69, 104204 (2004

B. Band-edge energy Here, the DOS profile remains similar to that of the nondis-
ordered system{Eq. (6a)], the only difference being the

The CPA band edge, denoted By is determined as the band-edge location

maximum energy at which le(w) # 0. As follows from the

above considerationsE is shifted from its disorder-free
valueE,, first, by (1/3)A%by(x) due to scattering processes
involving large k states, and second, by an amount The PCL, to be denoted bM(w), is usually defined as

~ A2va()2va(v)=d] giving the scale on which the renormal- the inverse exponent responsible for exponential falloff of
ized self-energy varies significantly. Comparing the disordethe coordinate-space single-particle propaget@uch defi-
scaling exponent appearing in the two contributions, we conbition cannot be straightforwardly adopted in the case of
clude that the former prevails over the latter providedLRH because, as demonstrated in the Appendix, the propa-
vg(p)>d. Since it is alwaysug(x)<2 in 2D systems, the gator falls off in essentially nonexponential way. Instead, we

disorder-induced shif — E, scales ad\2. In 1D system the shall relate the PCL to an appropriately measured

lina d d the hobpi t-det2 t momentum-domain width of the §pectra| functia{w),
%caéng Aezpenhﬁ og ; 0222291?,)((5??;? A ;ne gets through N(w) =1/k(w). For energies close to the upper
—Eo~A%, while E—Ee~ or u=2. band edgex(w) is estimated from Eqg4) and(8) to be

E. Phase coherence length

C. Spectral density w—Eg—o(w) Uvg(p)

Ca(p)
Ffjsing Eq.(163 for the CPA self-energy, one gets the follow-

ing disorder scaling of the PCL valid in the range
>3d/2:

k(w)~ Im | —

(223

Along with the results reported in Sec. Il A, one can also
obtain the disorder-averaged spectral density at the upp
band edge:

1
A =——ImG . 1
((©)=——1m Gy(w) (17 ()~ - 22ri ] o2
From Eq.(8) the energy-domain width of the spectral density
can be estimated ag~|Im o(w)|. As has been demon-
strated above, if the LRH exponeptis greater than @/2,
such width will scale upon disorder as

It is worth noticing that scaling22b) is nicely reproduced
by means of a simple argument similar to that used in Ref.
12 for the SRH model. One proceeds confronting the two
quantities? energy spacingE between two adjacent states
y~ A2va(w2vg(w —d] (18) chalized Within domainiof a linear sizs, and. the reduged
disorder magnitude- AN~ %2 seen by the localized quasipar-
This formula is a generalization of the disorder-induced line+icle, the effect known as exchange narrowtfiglsing value
width estimatey~A“*? known for 1D tight-binding models N as a quantization length, from E@l) we can estimate the
with SRH**2Upon increasing the hopping ranggecreas- energy spacing SE~N~ "), Applying condition SE
ing 1) the disorder broadening of the resonance becomes AN~92 one arrives at the disorder scalingMs is given
less pronounced. Asu goes below 8/2, the zero- in Eq.(22b). Furthermore, the spectral density widtt8) is
momentum spectral density acquires a power-law form recovered being identified with the exchange-narrowed dis-
order magnitude~ AN~%2 whereN is found above.
Ax=o( @)~ A% —Eq| Vel =3, (19 For u<3d/2, special attention should be paid on the fact
thato' (w) vanishes faster than linearly asapproacheg&, .
Direct calculation shows that in this case, the PCL inside the
spectral region ¢<E}) scales as

Noticeably, for the specified interval of the exponent

d/vyg(u)—3 is greater thar-1. This guarantees integrabil-
ity of the spectral density around=E. Hence, there is no
contradiction with the single-particle sum rule.

1
N(w)~ —|w—Eg|?~ (@ D), (220
D. Density of states A

The next important question we address is the asymptotiRemarkably, suctN(w) diverges not only upon decreasing
behavior of the DOS in the proximity of the band edge.the strength of disordek, but also as energy approaches
Expression(13) can be used to relate the DOS the band edge. From both E482b) and(229) it follows that

the PCL is infinite at the upper band edge in the marginal
(20) caseu=3d/2.

1
plw)=— P Im Gpn(w)
to the CPA self-energy. As follows from E¢l2), the DOS IV. NUMERICAL RESULTS

drops abruptly, i.e., has infinite derivative at the band edge, To further clarify the properties possessed by the LRH
providedu>3d/2. In the opposite cas@,<3d/2, using Eq.  model(1), we solved the CPA equations numerically, without

(16b) we obtain any of approximations used in the above analytical treat-
T ment. In this section, we present the numerical results and
p(w)~ag(p)|o—Eg|* (21)  compare them to those obtained in Sec. Ill. The self-
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p=1.25 u=15 n=1.75

03

02

0.1

03} 4 4 -

FIG. 1. CPA DOS calculated for several val-
ues of disorder strength and hopping-range ex-
0.1} 4 4 i ponentsg.

p(w)
cT=v

02} 4 4 -

C=V

01} 4 4 -

consistency equatiof10) was solved using a standard itera- The hopping integral falling off slowly enoughu-1<1)

tive scheme; the momentum integrél,,(o)=2,Gy(w) leads to the rapidly growing size of matrices needed to avoid
was evaluated with an efficient mesh-optimized algorithmthe discreteness of DOS in the tail region. For instance, to
For definiteness, we restricted ourselves to one dimensiomet a reasonably small valueE=0.01 for x=1.25, one
d=1. To check the accuracy of CPA, we also directly diago-would have to handle numerically the matrices of rather ge-
nalized the Hamiltoniarf1) for an open chain ofV=1000 neric structure with sizéV~10°, the task unaffordable for
sites with statistical averaging over 500 disorder realizationscomputers.

The calculated DOS profiles are presented in Fig. 1 for To check the analytic expressi¢2l) against the full CPA
wn=1.25 u=1.5(marginal casg andu=1.75, and several solution we plotted in Fig3 a power of the CPA DOS with
values of the disorder strength. We notice difference in theéhe exponent equal to the inverse of that in form@a with
behavior of the CPA DOS at the high-energy tail dependingd=1. The fact that all curves witp not exceeding 3/2 can
on the exponeni, in accordance with the previous discus- be fitted to a straight line near the upper band edge confirms
sion. We also observe that the low-energy side of the DOS ithe validity of the asymptoti¢21). The shift of the upper
almost independent gf since the dispersion relation of the band edge with respect to its disorder-free location can be
disorder-free system is parabolic at the bottom of the and.
As illustrated in Fig. 2, even for noticeable disordeXx (
=2.5) the CPA is in excellent agreement with the exact di-
agonalization. Such impressive accuracy of CPA for tight-
binding models with simple band structure is guaranteed by _
the high number of energy-domain moments of the spectra 3 0.1} .
density being reproduced exactR/At the same time, the &
fully numerical spectrum suffers from finite-size oscillations,
especially noticeable in the DOS tail for valueswotlose to
unity. The lack of smoothness is an unavoidable consequenc gld . » . o . ., e
of the smallness of DOS in this spectral region. To estimate “a ) 0 5 4 6 8 10
the finite-size contribution one can look at spacifig be- o
tween the ground and the first size-quantization levels with
the disorder being turned off. As follows from E@}), such FIG. 2. CPA DOS(bold line) compared to that of exact diago-
spacing scales with lengthV” of the chain asSE~N1"#, nalization(narrow ling for u=1.25 andA=2.5.

0.2 v T T T T T T T T T T T
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0.25
0.20
&)
=
= 015
\'-/—- N
= o010
S
&
0.05
0.00
24
FIG. 3. CPA DOS after the power transformation. The degree of 3 0'35\ 0.1
disorderA is 2.5 for all curves. 0 0.2

extracted from the data presented in Fig. 3. The CPA results
concerning the band edge are summarized in Fig. 4. The
figure illustrates the general tendency of the band edge to
become more sensitive to disorder with increasing the range
of hopping. We also verified the scaling arguments of Sec.
Il B concerning the band edge by fitting the displacement

E—E, to a power law ofA. The outcome, summarized in
the inset of Fig. 4, demonstrates a qualitative agreement be-
tween the weak-disorder analytical considerations and the
full CPA solution. The agreement is especially good in the
extreme limits of very large and very small range of hopping
(u—1<1 and u>3, respectively. The discrepancy in the
intermediate region is caused by an insufficient precision
while separating out the dominating power-law contribution

in the presence of other similar contributions with close ex- - . . :
ponents. 00 05 10 15 20 25 30

5 — . . , K

FIG. 5. Contour plots of the CPA spectral densiy(w) for
pn=1.25,1.5,1.75 and degree of disorder 2.5.

n
o

din(E-E,) /dInA

So far, we were using the information contained in the
site-diagonal part of the Green’s function. Now we turn to
the off-diagonal part ofG(w) to reveal physics which is
related to the PCL. In Sec. lll E it has been anticipated that
the PCL behaves in an essentially different way in the two
ranges of the hopping exponentseparated by, = 3/2 (mar-
ginal casg it remains finite across the band a3 3/2 while
having a power-law singularity at the upper band edge as
n<3/2. To illustrate the argumentation used, we plot in Fig.

5 the momentum-domain spectral density obtained within the
CPA for three values ofu: u<3/2, u=3/2, andu>3/2.
E The first plot (w=1.25) clearly shows that the width of the
resonance along the momentum axis vanishes as the energy

FIG. 4. Dependence of the CPA upper band edge on the degregpproaches the upper band edge. In contrast, the same width
of disorder. Curves are plotted for several fixedelected between remains finite forw=1.75. The observed behavior is in com-
1.25 and 3.5 with step 0.25. The open circles in the inset show thplete agreement with the general definiti®29 and the
exponent obtained after fitting— E, with a power-law function of ~ asymptotic formulas for the PCL presented in Sec. Ill E.
disorder. The same exponent predicted by the weak-disorder ana- With the same values @i as above we also computed the
Iytic solution is shown with solid line. real-space spectral denshy;,,(w) for several fixed energies.
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u=125 n=15 u=175
®=9 A =575 A
©=4625
- . =355 A r
©=8 I Y
L =7 ] L ] L 4
— ] ©=525 /\ ®=4375
w=6 w=5 /\ w=425
_
] _ 1 F J L
= /™ N N w=415 A\ ©=4125
>8\ \./ \/ ]
TE A\ /\ ~_2s4 /\ w=45 /\ w=4
<
< SV
A A A ®w=3 /\ =425 /\ w=3.875
VvV ~ 7
AA w=2 /\ w=4 /\ ©=3.75
Vv AV v
l =1 /\ »=375 /\ =3.625
1 1 1
l w=0 /\ w=35 /\ w=3.5
0 W 0 \VIR V2 0 ~ o
“ L L . L . . L . L . . 1 L . . L L
-150 -100 -50 0O 50 100 150 50 100 50 0 50 100 150 -150 -100 50 0O 50 100 150
n-m n-m n-m

FIG. 6. Real-space spectral density normalized to the DOS. The degree of disoisi@c5 for all curves.

The quantity plotted in Fig. 6 is the real-space spectral denenergy against the upper band edge for different exponents
sity normalized to the DOS: it is unity when taken about the,,. As follows from this plot, foru<3/2 the energfcoin-
same sitd p(w) =Any(w)]. For energies located sufficiently ciges withE, i.e., the exponentially falling-off component of
far from the upper band edgé,m(w) displays damped 0s- the Green’s function exists for alb up to the band edge.

periodicity is approximately determined by the d|sorder—freein,[erval of 1, Im k(w) vanishes ats=E. Hence, the expo-

Toome;tu:gaithit:e tﬁgic'f'zcri bi;%rgeﬁ giﬁ;ﬂg’tﬁ; iggeeri:seeﬁ ntial component of the Green'’s function will have constant
P PP 9 PP 9 & velope at the upper band edge, thereby extending infinitely

disoro!er would correspo_nd to zero momentum. _The invers% space. This behavior is indeed observed in the panel of
damping rate of the oscillations provides an estimate of th?:ig 6 wiih u=1.25, thus confirming the main statement of

PCL. the paper about the divergence of the PCL. Regarding the

Before discussing PCL in more detail, let us make some . . :
remarks on the spatial behavior of the Green'’s function. As i{nterval_,u>3/2, it follows from the inset of Fig. 8 that the

was first mentioned in Sec. II, the real-space Green’s funcEN€rgyE lies inside the band. In this case, the PCL remains
tion contains not only a contribution varying exponentially finite across the band as is illustrated in Fig(p@nel of w
with coordinate, but also one falling off according to a power ™ 1.75).

law. In 1D system with arbitrary disorder-induced self- 10

energy, the main power-law contribution is given by Eq.

(A3). The best way to illustrate the presence of such power- 0.5+

law component is to plot the produdn—m|*A, () — ool

against the coordinate, as is done in Fig. 7. The finite offset@ ™ |

of the plotted quantity for larggn—m| is in good agreement E o054 \/\
with that following from the asymptotic expressioA3). :’: ]

The magnitude of the Green’s-function component falling = -1.04 n=1.75
off exponentially with coordinate is determined by the com- = p 5_‘ A=25
plex rootsk of the equatiorEy= w— o(w). Typical trajecto- < |
ries of k(w) for varying energy are shown in Fig. 8. For 2.0
concreteness, only the solutions with negative imaginary par —
were considered. The roots exist only fer below some 0 20 40 60 80 100 120 140
critical energyE. As o reachesE, the root disappears en- n-m

countering the branch cut of the multivalued functig FIG. 7. Detection of the power-law component in the real-space

runnl_ng glong the Imaginary axis. HenC(_a_the exponent"”‘]spectral density. For the indicated parameters the CPA self-energy at
contribution vanishes for alb above the critical energy. In ' 3 57 \vas found to be-~0.66—0.44. The large-distance satu-

order to elucidate whether the energies E still belong to  ration value of the plotted quantity —0.19 shows excellent agree-
the spectrum we plotted in the inset to Fig. 8 the criticalment with the analytic result 1/7)Im(w— o— Eg) ~2.
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0.0 Y T

054 N

-1.0 1

FIG. 9. Complex-momentum integration contour for m<O0.
The contour corresponding to—m>0 is obtained by mirror re-
flection with respect to the horizontal axis.

Im k

-1.5 1

which one starts to observe the divergence of the PCL at the
upper band edge. Increasing the PCL for Frenkel excitons
could be deduced after measurement of the linear absorption
spectra, which in this case should fit the power-law form
(19). This opens the feasibility to test our predictions from

Re k experiments at low temperature.
FIG. 8. Trajectories of the complex roots of the equation ACKNOWLEDGMENT
—o(w)=E. For the indicated values qf, the critical energy is CKNO G S
compared with the upper band edgee the inset We are grateful to G. C. La Rocca and V. M. Agranovich
for helpful discussions. D.B.B. acknowledges Universidad
V. SUMMARY AND CONCLUDING REMARKS Complutense for hospitality. V.A.M. acknowledges support

) . . o from NATO during the initial stage of this work. Work in
In summary, we have investigated a tight-binding modelpjsa was supported by MIURGrant No. PRIN-2001L Work
with uncorrelated diagonal disorder and nonrandom hopping, Madrid was supported by DGI-MCyT(Grant No.
integrals given byJ,,=1/n—m[*. Using the coherent- \MAT2003-01533.
potential approximation, we calculated the density of states
and the phase-coherence length related to this system. The
addressed quantities were found to be affected by disorder in
an essentially different way depending on whether the

hopping-range exponent lies in the interak ;< 3d/2 or In this appendix, we calculate the real-space propagator
o= 3d/2. The first of these intervals is featured by the fathor d=1 to show that the presence of LRH makes it vary in

sion relation produces a tail of the density of states at the

high-energy part of the spectrum. The effect of disorder,

which introduces the mixing of states only within a narrow Gnm(w)=J

energy interval, is seriously weakened due to the small num-

ber of available states. In accordance with such qualitativ

argument, the tail-like part of the density of states, found in

self-consistent way, remains similar to that of the disorder

free system, apart for a small uniform shift induced by dis-

order. Foru<3d/2 the zero broadening at the edge of the

tail was shown to result in the divergence of the phase

coherence length, while fop>3d/2 it remained finite

across the band. Irrespectively @f the real-space propaga-

tor was demonstrated to contain a component decaying with .

coordinate as th—m|*. G @)= —i(ﬁ) e ik(@)n—m|
The model studied in the present paper is applicable to nm dk K(w)

various materials in which the energy of one-particle excita-

tions is of dipolar origin. As an example, let us mention _.J*de —n—m|

dipolar Frenkel excitons on two-dimensional regular lattices : 0 ﬂe

where molecules are subjected to randomness due to a dis-

ordered environmert Some biological light-harvesting an- 1

tenna systent$ as well as dendrimet$may represent a re- T o—0— Eicio

alization of this model. The form of dipolar interactions

dictates the value of the hopping exponent: 3. For this  The first term, in which pol&(w) is to be obtained from

value of u, d=2 was shown to be the marginal case atequationw—o(w)=E, (|Rek|<,Imk<0), falls off as an

APPENDIX: EVALUATION OF THE REAL-SPACE
PROPAGATOR (1D SYSTEM)

= dk eik(n—m)
i re—— (A1)

y extending the integration contour in the complex momen-
tum plane as illustrated in Fig. 9. Theh term in Eq.(2),
decreasing not rapidly enough for—c, rendersE, a mul-
tivalued function of the complek: for all integerss, branch
cuts appear connecting pointsr with 27s*io. Integral
(A1) can be split into a part due to poles and one due to the
branch cuts of the integrand:

1

w—o—Ejo

. (A2)
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exponential of coordinate. This behavior is similar to thatl’ are the Riemann Zeta function and Gamma function,
observed for a full real-space propagator in the case of SRHespectivel° After some algebra we get

We show now that in the presence of LRH, the second term

decays as a power of distance. In the limit/of- m|— +o 1 1

the upper cutoff of the integral entering EGA2) can be G @)~ , (A3)
replaced with Jh—m|—0. Hence, only few terms in the [w—0(w)—Ep]? [n—m[#

expansion ofE;,.o around k=0 are sufficient to know

largein—m| asymptotic. The 1D version of Eq3) reads where E,=2{(u) is the disorder-free upper band-edge
Ex=2¢(u)+T(1—w)[(ik)* 1+ (—ik)* 1], where{ and  energy.
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