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Phase coherence in tight-binding models with nonrandom long-range hopping
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The density of states, even for a perfectly ordered tight-binding model, can exhibit a tail-like feature at the
top of the band, provided the hopping integral falls off in space slowly enough. We apply the coherent potential
approximation to study the eigenstates of a tight-binding Hamiltonian with uncorrelated diagonal disorder and
long-range hopping, falling off as a powerm of the intersite distance. For a certain interval of hopping-range
exponentm, we show that the phase-coherence length is infinite for the outermost state of the tail, irrespec-
tively of the strength of disorder. Such an anomalous feature can be explained by the smallness of the
phase-space volume for the disorder scattering from this state. As an application of the theory, we mention that
ballistic regime can be realized for Frenkel excitons in two-dimensional molecular aggregates, affecting to a
large extent the optical response and energy transport.
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I. INTRODUCTION

The atomic orbital framework used to characterize el
tronic states in solids commonly deals with short-range h
ping ~SRH!. For such situation it is well known that an
disorder leads to randomization of the wave-function ph
on some finite spatial scale known as phase-coherence le
~PCL!. Beyond this scale, roughly equal to the mean f
path, the charge transport has a diffusive form until the
herent backscattering causes Anderson localization.1 The na-
ture of states to be localized or extended is governed by
dimensionality of the system.2 Extensive studies have bee
carried out to establish the validity limits of the stateme
that all states in one-dimensional~1D! tight-binding models
are localized, originally formulated for the case of diagon
uncorrelated disorder and SRH.3 Recently, the absence o
extended states in low-dimensional systems was questio
in Refs. 4–7 foruncorrelated diagonal disorderand nonran-
dom long-range hopping~LRH! falling off as some power of
the intersite distance. To be specific, the authors consid
the model Hamiltonian

H5(
n

«nun&^nu1(
n,m

Jnmun&^mu, ~1!

where Jnm51/un2mum, and «n are uncorrelated random
variables distributed according to the same distribution fu
tion p(«n). ~Energy is measured in units of the neare
neighbor hopping.! The size scaling of the inverse particip
tion ratio was investigated both numerically and with the u
of supersymmetric method for disorder averaging combi
with the renormalization group. The outcome indicated t
for a d-dimensional lattice (d51,2), provided d,m
,3d/2, the uppermost states were subjected to the Ande
localization-delocalization transition with respect to the d
order magnitude, remaining delocalized for not very stro
disorder. Such anomalous occurrence of extended states
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matically differs from what has been observed so far in
majority of localization problems.

The inverse participation ratio criterion, even though b
ing a robust way to detect the Anderson localization, do
not completely capture the underlying structure of the wa
functions. In particular, such criterion does not seem to d
tinguish the case of pure Anderson transition from that
which the Anderson transition is accompanied by a transit
from the diffusive to the ballistic regime. The realization
the second scenario would imply that not only the localiz
tion length, but also the PCL becomes infinite at the tran
tion point. To best of our knowledge the PCL has never be
addressed so far for LRH models. At the same time the ph
ics of the diffusive-ballistic transition is much simpler tha
that of the localization transition since it deals essentia
with the single-particle Green’s function averaged over d
order realizations.

The aim of the present paper is to investigate the sing
particle properties of the Hamiltonian~1!. In particular, we
demonstrate that in the interval ofm, coinciding with that
reported in Ref. 6 for the existence of extended states,
PCL diverges at the upper band edge, even at moderate
gree of disorder. The task is fulfilled by making use of t
coherent-potential approximation~CPA!, known to be the
best available self-consistent approximation for the sing
particle Green’s function.8 The paper is organized as follows
In Sec. II we present some preliminary considerations of
disorder-free system, which are necessary for a better un
standing of the present paper. The body of the paper is
III, where we present the CPA approach to study the sing
particle Green’s function averaged over disorder realizatio
In particular, we discuss in detail its weak-disord
asymptotic solution. Then we proceed on to physical qua
ties such as band edge, spectral density, density of s
~DOS!, and PCL. The results of numerical simulations a
summarized in Sec. IV, where we compare them to the a
©2004 The American Physical Society04-1
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BALAGUROV, MALYSHEV, AND ADAME PHYSICAL REVIEW B 69, 104204 ~2004!
lytical predictions of the preceding section. We conclu
with a brief discussion of the relevance of the obtained
sults in Sec. V.

II. DISORDER-FREE SYSTEM

Without disorder («n50) the eigenstates of Hamiltonia
~1! are plane waves with quasimomentak within the first
Brillouin zone. The corresponding eigenenergies are gi
by

Ek5(
nÞ0

eik•n

unum
, ~2!

where summation runs over sites of a regulard-dimensional
lattice (d51,2). The lattice constant is set to unity. To de
with a bounded spectrum we assumem.d throughout the
paper. The complete account for all terms in the sum~2! is
important in the neighborhood of the upper band edge, wh
the LRH strongly modifies the dispersion. Specifical
aroundk50 the dispersion relation~2! is approximately as
follows:

Ek5E02Ad~m!ukum2d2Bd~m!uku21O~ uku4!. ~3!

Here, E0 , Ad(m),Bd(m) are known positive constants.5,6

Providedm,d12, the second essentially nonquadratic te
in Eq. ~3! dominates for smalluku over the next quadratic
term, and vice versa. We therefore cast expansion~3! in a
shorthand form

Ek5E02Cd~m!ukund(m), ~4!

where

Cd~m!5Ad~m!, nd~m!5m2d for m,d12,

Cd~m!5Bd~m!, nd~m!52 for m.d12. ~5!

Straightforward calculation of the DOS in the vicinity o
the upper band edge yields a power-law behavior

r~v!;ad~m!uv2E0ud/nd(m)21. ~6a!

Here, the constant factorad(m) is given by

ad~m!5
Sd

~2p!d

@Cd~m!#2d/nd(m)

nd~m!
, ~6b!

with Sd being the area of thed-dimensional unit sphere~we
set S152). It should be noticed that the DOS~6a! is very
sensitive to the value ofm: the exponentd/nd(m)21 in Eq.
~6a! has the familiar Van Hove form (d22)/2 for m.d12
and the less usual one, involving the dependence onm, for
the opposite inequality. Furthermore, asm,3d/2, both the
DOS and its derivative vanish at the energyE0, indicating
that this part of the energy spectrum is weakly populated
the states. In spite of a qualitative resemblance of a disor
induced band tail, in the model under consideration this
purely kinetic feature, stemming from the long-range nat
of hopping.
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Besides the unusual form of the DOS, the LRH results
in exponential but rather a power-law localization of stat
Previously found in numerical simulations,9 this feature can
be easily understood considering a nontypical site ene
fluctuation, i.e., the one with site energy«n essentially out-
side of the band. Then, the first order of perturbation the
with respect to the off-diagonal part of the Hamiltonian~1!
yields the corresponding wave functionFnm5dnm
1Jnm /«n which falls off as 1/un2mum upon increasing the
distance from the siten. Remarkably,Fnm does not vanish
outside some finite real-space interval, as it would be fo
perturbative wave function in the case of SRH. This mea
that for the LRH the perturbation theory provides an appro
mate solution valid in all space, and no higher-order corr
tions are needed as long asu«nu@uJnmu. For a generic rela-
tion between«n andJnm the omitted orders will correct the
coefficient of the 1/un2mum dependence and introduce som
new terms falling off faster than 1/un2mum. For«n inside the
band, both power-law and exponentially falling-off comp
nents in the wave function will appear. Their form can
deduced from calculations presented in the Appendix for
case of 1D system.

III. COHERENT-POTENTIAL APPROXIMATION

The CPA is a reliable and efficient method to study t
disorder-averaged DOS and the phase coherence bet
wave functions for different members of the rando
ensemble.8,10 These characteristics can be extracted from
disorder-averaged single-particle propagator

G~v!5E )
n

d«np~«n!
1

v2H
. ~7!

Unless otherwise specified, the energy variablev will have
an infinitesimal positive imaginary part. In the framework
CPA, quantity~7! is approximated in a self-consistent way
preserve its analytic properties and deliver the correct lim
ing behavior as either the disorder strength or the hopp
amplitude tends to zero. Namely, it is argued that a go
approximation for the single-particle propagator is to treat
disorder-generated self-energy as a site-diagonal quantit
other words, average~7! is evaluated by replacing the sit
energy«n by a coherent potentials(v),

Gk~v!5
1

v2s~v!2Ek
. ~8!

The choice ofs(v) should be such to compensate on av
age scattering from a single site. The resulting se
consistency condition reads~see, e.g., Ref. 10!

E d«np~«n!
«n2s~v!

12@«n2s~v!#Gnn~v!
50, ~9!

where Gnn(v) is the site-diagonal element of the CP
Green’s function.

We adopt for the random site energies the distribut
uniform within symmetric interval @2D,D#. For such
4-2



d

in
n
n
n
a

a

d
os
be

ge
la

is
ca
th
y

t

ll
o

m

in
an

e
in

d

q.

pen-
; the

all

pon

ing:

ire
gy
ed
s

i-

only

-
e

or-

r
ns

a

we
ties,
CL.

PHASE COHERENCE IN TIGHT-BINDING MODELS . . . PHYSICAL REVIEW B 69, 104204 ~2004!
p(«n), the integral in Eq.~9! can be evaluated explicitly, an
we get the self-consistency equation in the form

1

2D
ln

11@s~v!1D#Gnn~v!

11@s~v!2D#Gnn~v!
5Gnn~v!. ~10!

The resulting CPA propagator will be studied numerically
Sec. IV. In the rest of the present section, we derive an a
lytic solution of the theory in the weak-disorder limit. As a
outcome, the asymptotic formulas for the observable qua
ties, namely band-edge energy, spectral density, DOS,
PCL, will be obtained.

A. Weak-disorder self-energy

To access the weak-disorder limit of CPA we perform
formal small-D expansion in Eq.~10! retaining terms up to
D2. Then the self-consistency condition acquires the form

s~v!5
D2

3

Gnn~v!

@11Gnn~v!s~v!#2
. ~11!

The termGnn(v)s(v) in the denominator can be neglecte
because eventually it turns out to be proportional to a p
tive power ofD!1. Thus the weak-disorder equation to
analyzed reads

s~v!5
D2

3
Gnn~v!. ~12!

Both of the two approximative steps yielding Eq.~12! do not
introduce any spurious singularities around the band ed
e.g., such as those emerging after truncation of the cumu
series for the Green’s function~see Ref. 10!. Such preserva-
tion of the analyticity in the vicinity of the band edge
guaranteed by the full account for self-energy in the lo
Green’s function entering the equation. We notice that
coefficient (1/3)D2 in Eq. ~12! coincides with the site-energ
variance, the second centered moment ofp(«n). From this
remark, we conclude that the weak-disorder equation~12!
holds for any distribution functionp(«n) decreasing fas
enough at large«n ~specifically, if theM th-order centered
moment scales asDM).

Weak disorder mixes only a small part of otherwise we
defined-momenta states within an energy interval of the
der of the effective broadening;Im s(v). This facilitates
evaluation of the site-diagonal propagator entering Eq.~12!.
Namely, for energies close to the upper band edge only s
k will contribute to Gnn(v)5(kGk(v). Becauses(v) is
small due to the weakness of disorder, while the detun
v2E0 can be made small close enough to the upper b
edge, the site-diagonal Green’s function can be found as

Gnn~v!;
pad~m!@v2E02s~v!#d/nd(m)21

sin@pd/nd~m!#
1bd~m!.

~13!

Here, the first term@in which ad(m) is given by Eq.~6b!#
comes solely from the small momenta and does not dep
on any momentum cutoff. The magnitude of the contribut
k can be estimated from the dispersion law~4! as k;uv
10420
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2E02s(v)u1/nd(m). The imaginary part of the considere
term is nonzero in the limit of vanishing disorder@s(v)
50#, in agreement with the singular or tail-like DOS of E
~6a!. The second term in Eq.~13! is a real constant repre-
senting the part of the site-diagonal propagator whose de
dence on energy is smooth near the upper band edge
major contribution comes from the higherk. The exact value
of bd(m) can be found via numerical summation over
momenta inGnn(v).

Accounting for the constantbd(m) in the weak-disorder
self-consistency equation~12! is equivalent to a shift of both
the band-edge position and the self-energy. Namely, u
transformation E085E01(1/3)D2bd(m), s8(v)5s(v)
2(1/3)D2bd(m), Eq. ~12! takes a form as if only the low-
momenta states were participating in the disorder scatter

s8~v!5
D2

3

pad~m!@v2E082s8~v!#d/nd(m)21

sin@pd/nd~m!#
. ~14!

While E082E0 is a mere shift the uppermost states acqu
due to the coupling to the continuum of remote low-ener
~high-momenta! states, the broadening effect, account
through Eq.~14!, originates from the mixing of nearby state
at the band edge.

The solution of Eq.~14! turns out to be extremely sens
tive to the value of the exponentm. In particular, for a fixed
energyv5E08 it follows that either

s8~E08!5H D2

3

pad~m!

sin@pd/nd~m!#J
nd(m)/[2nd(m)2d]

~15a!

or

s8~E08!50. ~15b!

The former expression can be considered as being valid
at m.3d/2 where nd(m).d/2, because otherwise~at m
,3d/2) the exponentnd(m)/@2nd(m)2d# becomes nega
tive, resulting in failure of the zero-disorder limit. Then, th
latter expression should be used.

From the presented arguments it follows that the ren
malized self-energy remains finite atv5E08 varying with
energy on the scale;D2nd(m)/[2nd(m)2d] providedm.3d/2.
The complete solution of Eq.~14! in this case looks rathe
involved, but for the forthcoming, qualitative consideratio
based on disorder scaling

s8~v!;D2nd(m)/[2nd(m)2d] ~16a!

will suffice. Regarding the range ofm,3d/2, the renormal-
ized self-energy vanishes faster than linearly asv ap-
proachesE08 . The solution in this case can be obtained in
closed form

s8~v!;
D2

3

pad~m!

sin@pd/nd~m!#
~v2E08!d/nd(m)21. ~16b!

Having derived the CPA self-energy, at next step
present analytical results concerning observable quanti
namely band-edge energy, spectral density, DOS, and P
4-3
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B. Band-edge energy

The CPA band edge, denoted byẼ, is determined as the
maximum energy at which Ims(v)Þ0. As follows from the
above considerations,Ẽ is shifted from its disorder-free
valueE0, first, by (1/3)D2bd(m) due to scattering processe
involving large k states, and second, by an amou
;D2nd(m)/[2nd(m)2d] giving the scale on which the renorma
ized self-energy varies significantly. Comparing the disor
scaling exponent appearing in the two contributions, we c
clude that the former prevails over the latter provid
nd(m).d. Since it is alwaysnd(m)<2 in 2D systems, the
disorder-induced shiftẼ2E0 scales asD2. In 1D system the
scaling depends on the hopping exponent: form,2 one gets
Ẽ2E0;D2, while Ẽ2E0;D2(m21)/(2m23) for m.2.

C. Spectral density

Along with the results reported in Sec. III A, one can al
obtain the disorder-averaged spectral density at the u
band edge:

Ak~v!52
1

p
Im Gk~v!. ~17!

From Eq.~8! the energy-domain width of the spectral dens
can be estimated asg;uIm s(v)u. As has been demon
strated above, if the LRH exponentm is greater than 3d/2,
such width will scale upon disorder as

g;D2nd(m)/[2nd(m)2d] . ~18!

This formula is a generalization of the disorder-induced lin
width estimateg;D4/3 known for 1D tight-binding models
with SRH.11,12 Upon increasing the hopping range~decreas-
ing m) the disorder broadening of the resonance beco
less pronounced. Asm goes below 3d/2, the zero-
momentum spectral density acquires a power-law form

Ak50~v!;D2uv2E08u
d/nd(m)23. ~19!

Noticeably, for the specified interval ofm the exponent
d/nd(m)23 is greater than21. This guarantees integrabi
ity of the spectral density aroundv5E08 . Hence, there is no
contradiction with the single-particle sum rule.

D. Density of states

The next important question we address is the asympt
behavior of the DOS in the proximity of the band edg
Expression~13! can be used to relate the DOS

r~v!52
1

p
Im Gnn~v! ~20!

to the CPA self-energy. As follows from Eq.~12!, the DOS
drops abruptly, i.e., has infinite derivative at the band ed
providedm.3d/2. In the opposite case,m,3d/2, using Eq.
~16b! we obtain

r~v!;ad~m!uv2E08u
d/nd(m)21. ~21!
10420
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Here, the DOS profile remains similar to that of the nond
ordered system@Eq. ~6a!#, the only difference being the
band-edge location.

E. Phase coherence length

The PCL, to be denoted byN(v), is usually defined as
the inverse exponent responsible for exponential falloff
the coordinate-space single-particle propagator.13 Such defi-
nition cannot be straightforwardly adopted in the case
LRH because, as demonstrated in the Appendix, the pro
gator falls off in essentially nonexponential way. Instead,
shall relate the PCL to an appropriately measu
momentum-domain width of the spectral functionk(v),
through N(v)51/k(v). For energies close to the uppe
band edge,k(v) is estimated from Eqs.~4! and ~8! to be

k~v!; Im F2
v2E02s~v!

Cd~m! G1/nd(m)

. ~22a!

Using Eq.~16a! for the CPA self-energy, one gets the follow
ing disorder scaling of the PCL valid in the rangem
.3d/2:

N~v!;D22/[2nd(m)2d] . ~22b!

It is worth noticing that scaling~22b! is nicely reproduced
by means of a simple argument similar to that used in R
12 for the SRH model. One proceeds confronting the t
quantities:12 energy spacingdE between two adjacent state
localized within domain of a linear sizeN, and the reduced
disorder magnitude;DN2d/2 seen by the localized quasipa
ticle, the effect known as exchange narrowing.14 Using value
N as a quantization length, from Eq.~4! we can estimate the
energy spacingdE;N2nd(m). Applying condition dE
;DN2d/2, one arrives at the disorder scaling ofN as is given
in Eq. ~22b!. Furthermore, the spectral density width~18! is
recovered being identified with the exchange-narrowed
order magnitude;DN2d/2 whereN is found above.

For m,3d/2, special attention should be paid on the fa
thats8(v) vanishes faster than linearly asv approachesE08 .
Direct calculation shows that in this case, the PCL inside
spectral region (v,E08) scales as

N~v!;
1

D2
uv2E08u

22(d11)/nd(m). ~22c!

Remarkably, suchN(v) diverges not only upon decreasin
the strength of disorderD, but also as energyv approaches
the band edge. From both Eqs.~22b! and~22c! it follows that
the PCL is infinite at the upper band edge in the margi
casem53d/2.

IV. NUMERICAL RESULTS

To further clarify the properties possessed by the LR
model~1!, we solved the CPA equations numerically, witho
any of approximations used in the above analytical tre
ment. In this section, we present the numerical results
compare them to those obtained in Sec. III. The se
4-4
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FIG. 1. CPA DOS calculated for several va
ues of disorder strengthD and hopping-range ex
ponentsm.
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consistency equation~10! was solved using a standard iter
tive scheme; the momentum integralGnn(v)5(kGk(v)
was evaluated with an efficient mesh-optimized algorith
For definiteness, we restricted ourselves to one dimens
d51. To check the accuracy of CPA, we also directly diag
nalized the Hamiltonian~1! for an open chain ofN51000
sites with statistical averaging over 500 disorder realizatio

The calculated DOS profiles are presented in Fig. 1
m51.25, m51.5 ~marginal case!, andm51.75, and severa
values of the disorder strength. We notice difference in
behavior of the CPA DOS at the high-energy tail depend
on the exponentm, in accordance with the previous discu
sion. We also observe that the low-energy side of the DO
almost independent ofm since the dispersion relation of th
disorder-free system is parabolic at the bottom of the ba6

As illustrated in Fig. 2, even for noticeable disorder (D
52.5) the CPA is in excellent agreement with the exact
agonalization. Such impressive accuracy of CPA for tig
binding models with simple band structure is guaranteed
the high number of energy-domain moments of the spec
density being reproduced exactly.15 At the same time, the
fully numerical spectrum suffers from finite-size oscillation
especially noticeable in the DOS tail for values ofm close to
unity. The lack of smoothness is an unavoidable conseque
of the smallness of DOS in this spectral region. To estim
the finite-size contribution one can look at spacingdE be-
tween the ground and the first size-quantization levels w
the disorder being turned off. As follows from Eq.~4!, such
spacing scales with lengthN of the chain asdE;N 12m.
10420
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The hopping integral falling off slowly enough (m21!1)
leads to the rapidly growing size of matrices needed to av
the discreteness of DOS in the tail region. For instance
get a reasonably small valuedE50.01 for m51.25, one
would have to handle numerically the matrices of rather
neric structure with sizeN;108, the task unaffordable for
computers.

To check the analytic expression~21! against the full CPA
solution we plotted in Fig. 3 a power of the CPA DOS with
the exponent equal to the inverse of that in formula~21! with
d51. The fact that all curves withm not exceeding 3/2 can
be fitted to a straight line near the upper band edge confi
the validity of the asymptotic~21!. The shift of the upper
band edge with respect to its disorder-free location can

FIG. 2. CPA DOS~bold line! compared to that of exact diago
nalization~narrow line! for m51.25 andD52.5.
4-5
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extracted from the data presented in Fig. 3. The CPA res
concerning the band edge are summarized in Fig. 4.
figure illustrates the general tendency of the band edg
become more sensitive to disorder with increasing the ra
of hopping. We also verified the scaling arguments of S
III B concerning the band edge by fitting the displacem
Ẽ2E0 to a power law ofD. The outcome, summarized i
the inset of Fig. 4, demonstrates a qualitative agreement
tween the weak-disorder analytical considerations and
full CPA solution. The agreement is especially good in t
extreme limits of very large and very small range of hopp
(m21!1 andm.3, respectively!. The discrepancy in the
intermediate region is caused by an insufficient precis
while separating out the dominating power-law contributi
in the presence of other similar contributions with close
ponents.

FIG. 3. CPA DOS after the power transformation. The degree
disorderD is 2.5 for all curves.

FIG. 4. Dependence of the CPA upper band edge on the de
of disorder. Curves are plotted for several fixedm selected between
1.25 and 3.5 with step 0.25. The open circles in the inset show

exponent obtained after fittingẼ2E0 with a power-law function of
disorder. The same exponent predicted by the weak-disorder
lytic solution is shown with solid line.
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So far, we were using the information contained in t
site-diagonal part of the Green’s function. Now we turn
the off-diagonal part ofG(v) to reveal physics which is
related to the PCL. In Sec. III E it has been anticipated t
the PCL behaves in an essentially different way in the t
ranges of the hopping exponentm separated bym53/2 ~mar-
ginal case!: it remains finite across the band asm.3/2 while
having a power-law singularity at the upper band edge
m,3/2. To illustrate the argumentation used, we plot in F
5 the momentum-domain spectral density obtained within
CPA for three values ofm: m,3/2, m53/2, andm.3/2.
The first plot (m51.25) clearly shows that the width of th
resonance along the momentum axis vanishes as the en
approaches the upper band edge. In contrast, the same w
remains finite form51.75. The observed behavior is in com
plete agreement with the general definition~22a! and the
asymptotic formulas for the PCL presented in Sec. III E.

With the same values ofm as above we also computed th
real-space spectral densityAnm(v) for several fixed energies

f

ee

e

a-

FIG. 5. Contour plots of the CPA spectral densityAk(v) for
m51.25,1.5,1.75 and degree of disorderD52.5.
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FIG. 6. Real-space spectral density normalized to the DOS. The degree of disorderD is 2.5 for all curves.
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The quantity plotted in Fig. 6 is the real-space spectral d
sity normalized to the DOS: it is unity when taken about t
same site@r(v)5Ann(v)#. For energies located sufficientl
far from the upper band edge,Anm(v) displays damped os
cillations as a function of the distance between sites. Th
periodicity is approximately determined by the disorder-fr
momentum at the specified energy; naturally, it decrea
upon approaching the upper band edge that in the absen
disorder would correspond to zero momentum. The inve
damping rate of the oscillations provides an estimate of
PCL.

Before discussing PCL in more detail, let us make so
remarks on the spatial behavior of the Green’s function. A
was first mentioned in Sec. II, the real-space Green’s fu
tion contains not only a contribution varying exponentia
with coordinate, but also one falling off according to a pow
law. In 1D system with arbitrary disorder-induced se
energy, the main power-law contribution is given by E
~A3!. The best way to illustrate the presence of such pow
law component is to plot the productun2mumAnm(v)
against the coordinate, as is done in Fig. 7. The finite of
of the plotted quantity for largeun2mu is in good agreemen
with that following from the asymptotic expression~A3!.

The magnitude of the Green’s-function component falli
off exponentially with coordinate is determined by the co
plex rootsk of the equationEk5v2s(v). Typical trajecto-
ries of k(v) for varying energy are shown in Fig. 8. Fo
concreteness, only the solutions with negative imaginary
were considered. The roots exist only forv below some
critical energyĒ. As v reachesĒ, the root disappears en
countering the branch cut of the multivalued functionEk
running along the imaginary axis. Hence the exponen
contribution vanishes for allv above the critical energy. In
order to elucidate whether the energiesv.Ē still belong to
the spectrum we plotted in the inset to Fig. 8 the critic
10420
n-

ir
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e
e

e
it
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r

.
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rt

l

l

energy against the upper band edge for different expon
m. As follows from this plot, form,3/2 the energyĒ coin-
cides withẼ, i.e., the exponentially falling-off component o
the Green’s function exists for allv up to the band edge
Furthermore, as can be seen in Fig. 8, for the above indic
interval of m, Im k(v) vanishes atv5Ẽ. Hence, the expo-
nential component of the Green’s function will have const
envelope at the upper band edge, thereby extending infin
in space. This behavior is indeed observed in the pane
Fig. 6 with m51.25, thus confirming the main statement
the paper about the divergence of the PCL. Regarding
interval m.3/2, it follows from the inset of Fig. 8 that the
energyĒ lies inside the band. In this case, the PCL rema
finite across the band as is illustrated in Fig. 6~panel ofm
51.75).

FIG. 7. Detection of the power-law component in the real-sp
spectral density. For the indicated parameters the CPA self-ener
v53.57 was found to bes'0.6620.42i . The large-distance satu
ration value of the plotted quantity'20.19 shows excellent agree
ment with the analytic result (21/p)Im(v2s2E0)22.
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V. SUMMARY AND CONCLUDING REMARKS

In summary, we have investigated a tight-binding mo
with uncorrelated diagonal disorder and nonrandom hopp
integrals given byJnm51/un2mum. Using the coherent-
potential approximation, we calculated the density of sta
and the phase-coherence length related to this system.
addressed quantities were found to be affected by disord
an essentially different way depending on whether
hopping-range exponent lies in the intervald,m,3d/2 or
m.3d/2. The first of these intervals is featured by the fa
that, for turned-off disorder, the infinite slope of the disp
sion relation produces a tail of the density of states at
high-energy part of the spectrum. The effect of disord
which introduces the mixing of states only within a narro
energy interval, is seriously weakened due to the small n
ber of available states. In accordance with such qualita
argument, the tail-like part of the density of states, found i
self-consistent way, remains similar to that of the disord
free system, apart for a small uniform shift induced by d
order. Form,3d/2 the zero broadening at the edge of t
tail was shown to result in the divergence of the pha
coherence length, while form.3d/2 it remained finite
across the band. Irrespectively ofm, the real-space propaga
tor was demonstrated to contain a component decaying
coordinate as 1/un2mum.

The model studied in the present paper is applicable
various materials in which the energy of one-particle exc
tions is of dipolar origin. As an example, let us menti
dipolar Frenkel excitons on two-dimensional regular lattic
where molecules are subjected to randomness due to a
ordered environment.16 Some biological light-harvesting an
tenna systems17 as well as dendrimers18 may represent a re
alization of this model. The form of dipolar interaction
dictates the value of the hopping exponent,m53. For this
value of m, d52 was shown to be the marginal case

FIG. 8. Trajectories of the complex roots of the equationv
2s(v)5Ek . For the indicated values ofm, the critical energy is
compared with the upper band edge~see the inset!.
10420
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which one starts to observe the divergence of the PCL at
upper band edge. Increasing the PCL for Frenkel excit
could be deduced after measurement of the linear absorp
spectra, which in this case should fit the power-law fo
~19!. This opens the feasibility to test our predictions fro
experiments at low temperature.
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APPENDIX: EVALUATION OF THE REAL-SPACE
PROPAGATOR „1D SYSTEM…

In this appendix, we calculate the real-space propag
for d51 to show that the presence of LRH makes it vary
space nonexponentially. Following Ref. 19, we compute

Gnm~v!5E
2p

p dk

2p

eik(n2m)

v2s2Ek
~A1!

by extending the integration contour in the complex mom
tum plane as illustrated in Fig. 9. Thenth term in Eq.~2!,
decreasing not rapidly enough forn→`, rendersEk a mul-
tivalued function of the complexk: for all integerss, branch
cuts appear connecting points 2ps with 2ps6 i`. Integral
~A1! can be split into a part due to poles and one due to
branch cuts of the integrand:

Gnm~v!52 i S dEk

dk D
k(v)

21

e2 ik(v)un2mu

2 i E
0

1` dk

2p
e2kun2muF 1

v2s2Eik20

2
1

v2s2Eik10
G . ~A2!

The first term, in which polek(v) is to be obtained from
equationv2s(v)5Ek (uRe ku,p,Imk,0), falls off as an

FIG. 9. Complex-momentum integration contour forn2m,0.
The contour corresponding ton2m.0 is obtained by mirror re-
flection with respect to the horizontal axis.
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exponential of coordinate. This behavior is similar to th
observed for a full real-space propagator in the case of S
We show now that in the presence of LRH, the second te
decays as a power of distance. In the limit ofun2mu→1`
the upper cutoff of the integral entering Eq.~A2! can be
replaced with 1/un2mu→0. Hence, only few terms in the
expansion ofEik60 around k50 are sufficient to know
large-un2mu asymptotic. The 1D version of Eq.~3! reads
Ek52z(m)1G(12m)@( ik)m211(2 ik)m21#, where z and

*Electronic address: d.balagurov@sns.it
1P.W. Anderson, Phys. Rev.109, 1492~1958!.
2E. Abrahams, P.W. Anderson, D.C. Licciardello, and V. R

makrishnan, Phys. Rev. Lett.42, 673 ~1979!.
3N.F. Mott and W.D. Twose, Adv. Phys.10, 107~1961!; B. Kramer

and A. MacKinnon, Rep. Prog. Phys.56, 1469~1993!.
4J.C. Cressoni and M.L. Lyra, Physica A256, 18 ~1998!.
5A. Rodrı́guez, V.A. Malyshev, and F. Domı´nguez-Adame, J. Phys

A 33, L161 ~2000!.
6A. Rodrı́guez, V.A. Malyshev, G. Sierra, M.A. Martı´n-Delgado, J.

Rodrı́guez-Laguna, and F. Domı´nguez-Adame, Phys. Rev. Let
90, 027404~2003!.

7S.-J. Xiong and G.-P. Zhang, Phys. Rev. B68, 174201~2003!.
8P. Soven, Phys. Rev.156, 809 ~1967!; D.V. Taylor, ibid. 156,

1017 ~1967!.
9C. Yeung and Y. Oono, Europhys. Lett.4, 1061~1987!.

10R.J. Elliott, J.A. Krumhansl, and P.L. Leath, Rev. Mod. Phys.46,
465 ~1974!.

11A. Boukahil and D.L. Huber, J. Lumin.45, 13 ~1990!; M.
Schreiber and Y. Toyozawa, J. Phys. Soc. Jpn.51, 1528~1982!;
H. Fidder, J. Knoester, and D.A. Wiersma, J. Chem. Phys.95,
7880~1991!; L.D. Bakalis and J. Knoester, J. Lumin.86-87, 66
~2000!.

12V.A. Malyshev, Opt. Spektrosk.71, 873 ~1991! @Opt. Spectrosc.
71, 505 ~1991!#; J. Lumin.55, 225 ~1993!; V. Malyshev and P.
Moreno, Phys. Rev. B51, 14 587 ~1995!; V.A. Malyshev, A.
Rodrı́guez, and F. Domı´nguez-Adame,ibid. 60, 14 140~1999!;
V.A. Malyshev and F. Domı´nguez-Adame, Chem. Phys. Let
313, 255 ~1999!; A.V. Malyshev and V.A. Malyshev, Phys. Rev
10420
t
H.
m

G are the Riemann Zeta function and Gamma functi
respectively.20 After some algebra we get

Gnm~v!;
1

@v2s~v!2E0#2

1

un2mum
, ~A3!

where E052z(m) is the disorder-free upper band-edg
energy.

-

B 63, 195111~2001!.
13A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski,Methods of

Quantum Field Theory in Statistical Physics~Dover, New York,
1975!

14E.W. Knapp, Chem. Phys.85, 73 ~1984!.
15B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev.175,

747 ~1968!.
16A. Nabetani, A. Tamioka, H. Tamaru, and K. Miyano, J. Che

Phys.102, 5109~1995!; A. Tamioka and K. Miyano, Phys. Rev
B 54, 2963 ~1996!; F. Domı́nguez-Adame, V.A. Malyshev, and
A. Rodrı́guez, J. Chem. Phys.112, 3023~2000!; L.D. Bakalis, I.
Rubtsov, and J. Knoester,ibid. 117, 5393 ~2002!; S.S. Lam-
poura, C. Spitz, S. Dahne, J. Knoester, and K. Duppen, J. P
Chem. B106, 3103~2002!.

17H. van Amerongen, L. Valkunas, and R. van Grondelle,Photo-
synthetic Excitons~World Scientific, Singapore, 2000!; T.
Renger, V. May, and O. Ku¨hn, Phys. Rep.343, 137 ~2001!.

18R. Kopelman, M. Shortreed, Z.-Y. Shi, W. Tan, Z. Xu, J. Moor
A. Bar-Haim, and J. Klafter, Phys. Rev. Lett.78, 1239 ~1997!;
K. Herigaya, Phys. Chem. Chem. Phys.1, 1687 ~1999!; M.A.
Martı́n-Delgado, J. Rodrı´guez-Laguna, and G. Sierra, Phys. Re
B 65, 155116 ~2002!; O.P. Varnavski, J.C. Ostrowski, L
Sukhomlinova, R.J. Twieg, G.C. Bazan, and T. Goodson III
Am. Chem. Soc.124, 1736~2002!.

19D.B. Balagurov, G.C. La Rocca, and V.M. Agranovich, Phys. R
B 68, 045418~2003!.

20To derive this formula one can notice thatEk5Lim(eik)
1Lim(e2 ik), where Li is Polylogarithm, and then use the expa
sion presented at http://functions.wolfram.com/10.08.06.0024
4-9


