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Disordered transition metal dichalcogenides: A coherent potential approximation study
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We introduce a solvable four-band model to study electron energy levels in disordered transition metal
dichalcogenides. Electron states in the pristine monolayer are described by a k · p Hamiltonian. Point defects
are assumed to be randomly distributed on a regular lattice. The interaction of electrons with the defects is
accounted for by a separable pseudopotential, thus yielding a solvable model suitable for long- and short-range
interactions. The coherent potential approximation is used to obtain the configurationally averaged density of
states. We compare to models of disorder, namely, binary disorder and Anderson disorder. Importantly, both
disorder models yield consistent outcomes, demonstrating that an increase in disorder strength results in a
narrowing of the energy gap. Remarkably, CPA with binary disorder provides results that are in very good
agreement with available density functional theory and experimental data for the optical gap in the monolayer
alloy Mo1−xWxS2. Moreover, it entails less computational effort than density functional theory calculations.
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I. INTRODUCTION

Layered transition metal dichalcogenides (TMDs) consti-
tute a class of materials that can be exfoliated into monolayers,
displaying specific physical properties not shared by their
bulk counterpart [1,2]. Their chemical formula is MX2, where
M is a transition metal (usually molybdenum, tungsten, or
rhenium) and X is a chalcogen other than oxygen (sulfur,
selenium, tellurium). The crossover from an indirect-gap
semiconductor at multilayers to a direct band-gap one at
monolayer as well as high electron mobility make TMDs
materials of choice for optoelectronic applications. Electron
states near the valence band maximum and the conduction
band minimum are mainly composed of the d orbitals of the
metal atom and p orbitals of the chalcogen atom, respectively.
Most common monolayer TMDs present an optical band gap
of about 1.6 − 2.0 eV, paving the way for the design of optical
devices, such as photodetectors [3], in the visible range.

Crystalline defects have a more pronounced impact on the
physical properties of monolayer TMDs compared to their
multilayer structures because of their reduced dimensionality.
Point defects (PDs), such as impurities, vacancies and intersti-
tials, play a critical role in tailoring the electronic and optical
properties of these materials [4,5]. Disorder induced by a sig-
nificant amount of PDs creates a random potential landscape
that inhomogeneously broadens electron levels of TMDs, as
revealed by optical techniques [6–8]. The interplay between
disorder and electron-electron interactions is responsible for
the enhancement by an order of magnitude of the transition
temperature for Wigner crystallization compared to pristine
TMDs [9].

The density of states (DOS) plays a central role in deter-
mining the physical behavior of TMDs. PDs can significantly

alter the DOS, introducing localized states in the band gap
and perturbing the states near the band edges. For instance,
sulfur vacancies are particularly common in MoS2 due to the
lower formation energy and play a dominant role in modifying
the DOS [10–12]. A sulfur vacancy introduces defect states
within the band gap, which can act as trap states or recombi-
nation centers [13].

From a theoretical viewpoint, ab initio approaches, such as
density functional theory (DFT), are extensively utilized for
calculating the electronic structure and the DOS in disordered
TMDs [14–17]. These methods provide accurate ground-state
properties but are computationally intensive, thereby limiting
their application to relatively small supercells. In contrast,
tight-binding approaches [18–21] and k · p models [22–24]
are well suited for large-scale simulations and for capturing
qualitative features of the DOS. However, their parameters
typically require fitting against DFT calculations or experi-
mental measurements.

The coherent potential approximation (CPA) is a well-
established theoretical method used to describe electron and
phonon states in disordered materials [25–27]. The CPA, orig-
inally rooted in Lax’s work on wave scattering in effective
media [28], was proposed by Soven [29] and later refined by
Velický et al. [30] for tight-binding electrons and by Tay-
lor [31] for phonons in the late 1960s. The formulation of
the CPA within the multiple scattering framework, specif-
ically the Korringa-Kohn-Rostoker method, was developed
by Shiba [32] (see also Ref. [33] and references therein).
The CPA provides a way to study quasiparticle states (elec-
trons, phonons, excitons, magnons) in disordered systems
by replacing the random potential with an effective (coher-
ent), translationally invariant potential. This approach allows
for the self-consistent calculation of physical quantities like
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TABLE I. Model parameters for monolayer TMDs reported in
Ref. [22]

� (eV) h̄v (eV Å) α (eV)

MoS2 0.830 3.51 0.0375
WS2 0.895 4.38 0.1075
MoSe2 0.735 3.11 0.0450
WSe2 0.800 3.94 0.1150

the DOS, conductivity, and magnetic properties, even in the
strong disorder limit. The CPA yields a much more accurate
description of substitutional disorder than simpler approaches
like the virtual crystal approximation (VCA), as discussed
below. Compared to full-scale DFT calculations, the CPA is
notably less computationally demanding, making it useful for
studying a wide range of concentrations of PDs and models of
disorder. In this work, we explore the impact of defects on the
DOS by extending the CPA to disordered TMDs. To this end,
we start from a k · p Hamiltonian to describe the defect-free
material and replace the electron-defect interaction potential
with a separable pseudopotential. In this way, we obtain a
model that is exactly solvable for calculating the coherent
potential describing the effective medium. Two models of
disorder due to the presence of PDs will be studied, namely,
binary disorder and Anderson disorder [34]. Although both
models of disorder lead to qualitatively similar results, when
compared with experiments we find that the binary disorder
model is more realistic for describing TMDs with a random
distribution of PDs.

II. THEORETICAL MODEL

In most common monolayer TMDs (MoS2, MoSe2, WS2

and WSe2), ab initio calculations indicate that the conduction-
and valence-band edges are located at the two nonequivalent
valleys K and K ′ of the hexagonal Brillouin zone [35,36].
The enhanced spin-orbit coupling induces a large spin split-
ting of the valence band, while the conduction band remains
degenerated. The minimal band model obtained by general
symmetry considerations yields the following two-band k · p
Hamiltonian up to first order in the in-plane momentum [22]:

Ĥ0 = s0 ⊗ (h̄vσ · k̂ + �σz ) + ατ sz ⊗ (σz − σ0), (1)

in the basis | φc 〉 = | dz2 〉 and | φτ
v 〉 = (1/

√
2)(| dx2−y2 〉 −

i τ | dxy 〉), where τ = ±1 is the valley index and the sub-
scripts c and v refer to the conduction band and valence
band, respectively. Here k̂ is the in-plane momentum operator,
and σ j ( j = x, y, z) and σ0 denote the Pauli matrices and the
2 × 2 unit matrix acting upon the basis functions. Similarly,
sz and s0 are the Pauli matrix and the 2 × 2 unit matrix for
spin. Since both matrices sz and s0 are diagonal, spin-up and
spin-down components are decoupled in this basis. In Eq. (1),
v is a model parameter with dimensions of velocity, 2� is the
energy gap and 4α is the valence-band splitting caused by the
spin-orbit coupling. These parameters are obtained by fitting
ab initio band structure calculations [22] and are presented
in Table I.

For the sake of concreteness, we will restrict ourselves to a
single valley hereafter. The Hamiltonian Ĥ0 given by (1) with
τ = 1 turns out to be block diagonal,

Ĥ0 =
(

Ĥ+ 0
0 Ĥ−

)
, (2a)

with

Ĥ± = h̄vσ · k̂ + (� ± α)σz ∓ ασ0. (2b)

Besides the trivial energy shift ∓α given by the last term,
each block Ĥ± corresponds to a two-dimensional massive
Dirac Hamiltonian with a spin-dependent gap � ± α.

In disordered TMDs, the single electron Hamiltonian splits
as Ĥ = Ĥ0 + Ĥdis, where the translationally invariant part is
given by Eq. (1). Ĥdis takes into account the electron interac-
tion with a random distribution of PDs. To proceed, we will
assume that PDs are located at random on a regular square
lattice of parameter a. It is most important to stress that a
is not related to the size of the unit cell of the honeycomb,
hexagonal lattice of TMDs. In fact, electrons do not see the
crystal structure since we are using a k · p approximation
for the Hamiltonian (1) for the pristine sample. The actual
electron interaction potential with the random array of PDs
will be replaced by the following separable pseudopotential
[37–40]:

Ĥdis =
∑

n

| ωn 〉λn〈ωn |, (3)

where n runs over all sites Rn of the square lattice and
ω(r − Rn) = 〈 r | ωn 〉 will be referred to as the shape func-
tion. λn is the coupling constant that takes random values with
a given probability distribution. We neglect valley and spin
mixing and assume that λn is a scalar. In spite of its seemingly
more complicated form, the separable pseudopotential model
is amenable to analytical solution for any arbitrary shape
function and allows us to obtain closed expressions for the
DOS within the CPA framework [37].

Two different models of disorder will be addressed in
this work. First, we will focus on binary disorder, when two
different species of PDs are considered. A given site of the
square lattice is occupied by a defect A with probability c or
by a defect B with probability 1 − c. Hence, the probability
distribution in this model of binary disorder is

P (λn) = cδ(λn − λA) + (1 − c)δ(λn − λB). (4a)

Second, we will also deal with Anderson disorder [34] with a
top hat probability distribution of width W ,

P (λn) = 1

W
θ (W/2 − |λ − λn|), (4b)

where θ is the Heaviside step function and λ > W/2, so
λn > 0. Averages over the probability distributions (4) will be
denoted as 〈· · · 〉av hereafter.

III. COHERENT POTENTIAL APPROXIMATION

In the body of the paper, we will be concerned with
the generalization of the CPA to TMDs. Among other well-
established approaches, the CPA is an excellent and accurate
alternative to purely numerical calculations. The starting point
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is the retarded resolvent of the Hamiltonian Ĥ , formally
defined as [26,27]

Ĝ(z) ≡ 1

z − Ĥ
, z ≡ E + i 0+. (5)

The use of the exact resolvent is impractical because it in-
corporates the random potential given in Eq. (3). For this
reason, our interest concerns its average over the possible
configurations of the disorder

〈Ĝ(z)〉av =
∫

P (λn)Ĝ(z)dλn, (6)

from which the average DOS can be readily obtained. Accord-
ing to the single-site CPA, the average resolvent is calculated
by introducing a periodic (translationally invariant) effective
medium characterized by a single coupling constant λ. On the
other hand, this effective coupling constant is determined by
replacing λ by λn at an arbitrary site n of the effective medium
and imposing that the scattering off on average equals that of
the effective medium itself [26].

The effective medium will be described by a Hamiltonian
ĤM that is to be determined. By definition, the corresponding
resolvent is ĜM(z) = 1/(z − ĤM), where ĤM is assumed to be
cast in the form [37]

ĤM = Ĥ0 +
∑

n

|ωn〉λ〈ωn|. (7)

Notice that, in the general case, the effective coupling constant
λ will be a 4 × 4 complex matrix such that ĜM(z) = 〈Ĝ(z)〉av.
From Eq. (5), one can write

Ĝ(z) = 1

z − ĤM − V̂
= ĜM(z)

1 − V̂ ĜM(z)
, (8a)

where we have defined

V̂ =
∑

n

|ωn〉(λn − λ)〈ωn| ≡
∑

n

V̂n. (8b)

Now we define the scattering operator T̂ through its rela-
tion with the resolvents as follows [26]:

Ĝ(z) = ĜM(z)[1 + T̂ (z) ĜM(z)], (9a)

which, when compared with Eq. (8a), leads to

T̂ (z) = [1 − V̂ ĜM(z)]−1V̂ . (9b)

Once we take the configuration average of Eq. (9a), and
bearing in mind that ĜM(z) describes a periodic (nonrandom)
medium, we obtain that the condition ĜM(z) = 〈Ĝ(z)〉av leads
to

〈T̂ (z)〉av = 0. (10)

Equation (10) can be viewed as an implicit equation for
the determination of the coupling constant λ of the effec-
tive medium because it enters the expression of V̂ given by
Eq. (8b). However, from Eq. (11) it is apparent that the calcu-
lation of the configuration average is complicated. In fact, V̂
is a summation that runs over all lattice sites. The CPA makes
a step forward and replaces V̂ by a single-site potential V̂n

in Eq. (10), which amounts to neglecting multiple scattering

events as a first-order approximation. Therefore, the central
equation of the CPA reads〈[

1 − V̂n ĜM(z)
]−1

V̂n

〉
av

= 0. (11)

The expansion (1 − x)−1 = ∑∞
�=0 x� and the definition

V̂n = |ωn〉(λn − λ)〈ωn| given in Eq. (8b) lead to[
1 − V̂n ĜM(z)

]−1
V̂n

= |ωn〉
[
1 − (λn − λ)F (z, λ)

]−1
(λn − λ)〈ωn| , (12a)

with (see Appendix A and Ref. [40] for further details)

F (z, λ) = 〈ωn|ĜM(z)|ωn〉

=
∫

|ω(k)|2D(z, λ, k) d2k (12b)

and

D(z, λ, k) =
(

z − 4π2

a2
λ| ω(k)|2 − H0(k)

)−1

. (12c)

Here we take into account that the Hamiltonian Ĥ0 is di-
agonal in the plane wave basis and write H0(k) = 〈k|Ĥ0|k〉.
ω(k) = (1/2π )

∫
exp(i k · r)ω(r) d2r is the Fourier transform

of the shape function that we assumed to vanish outside the
first Brillouin zone [37]. Therefore, Eq. (11) yields〈

λn − λ

1 − (λn − λ)F (z, λ)

〉
av

= 0. (12d)

The knowledge of 〈Ĝ(z)〉av = ĜM(z) allows us to obtain
the configurationally averaged spectral properties of the elec-
tron states in disordered TMDs. In particular, the average DOS
per unit area is computed from the following expression:

ρ(E ) = − 1

πS
Im

[
Tr

(
ĜM(E + i 0+)

)]
= − 1

4π3
Im

[
Tr

∫
D(E + i 0+, λ, k) d2k

]
, (13)

where S is the area of the TMD.

IV. RESULTS

Note that our approach is valid for any arbitrary function
ω(k). Therefore, it is suitable for the study of short-range
and long-range interaction potentials. In this paper, we will
focus on short-range shape functions and assume that ω(k) is
spherically symmetric. We will take

ω(k) = ω(k) = a

2π
θ (kc − k), (14)

where θ is the Heaviside step function and kc is a mo-
mentum cutoff to ensure that ω(k) vanishes outside the
first Brillouin zone. It is straightforward to demonstrate
that the off-diagonal terms of the 4 × 4 matrix appear-
ing in the integrand of Eq. (12b) are odd functions of
k and vanish after integration. Therefore, we can write
the coupling constant of the effective medium as a block-
diagonal matrix λ = diag(λ+

0 σ0 + λ+
z σz, λ

−
0 σ0 + λ−

z σz ) and

064204-3



PEDRO L. ALCÁZAR RUANO et al. PHYSICAL REVIEW B 112, 064204 (2025)

FIG. 1. Real (solid lines) and imaginary (dashed lines) of the
effective coupling constants (a) λ+

0 and (b) λ+
z as a function of

the shifted energy E − λVCA for c = 0.1 (black lines) and c = 0.5
(blue lines), when λA = 1.5� and λB = 0. Real (solid lines) and
imaginary (dashed lines) of the effective coupling constants (c) λ+

0

and (d) λ+
z as a function of the fraction of PDs at E = 0. The effective

coupling constant obtained within the virtual crystal approximation
λVCA = cλA has been subtracted in panels (a) and (b) for con-
venience. Orange solid line in panel (c) shows the corresponding
average DOS at E = 0 in arbitrary units.

F (z, λ) = diag[F+(z, λ+
0 , λ+

z ), F−(z, λ−
0 , λ−

z )] turns out to be
a block-diagonal matrix as well, where

F±(z, λ±
0 , λ±

z ) = a2

2π
[(z ± α − λ±

0 )σ0

+ (� ± α − λ±
z )σz]J±(z, λ±

0 , λ±
z ), (15a)

with

J±(z, λ±
0 , λ±

z ) =
∫ kc

0
[(z ± α − λ±

0 )2

− (� ± α − λ±
z )2 − h̄2v2k2]−1k dk. (15b)

After the scalar functions λ±
0 (E ) and λ±

z (E ) have been
obtained by solving Eq. (12d), the average DOS per unit area
is calculated as ρ(E ) = ρ+(E ) + ρ−(E ), where

ρ±(E ) = − 1

π2
Im[(E ± α − λ±

0 )J±(z, λ±
0 , λ±

z )]. (16)

We set a = 0.3 nm and kca = π in what follows. Concern-
ing the material parameters, as a working example we take
(h̄v/a�)2 = 2 and α = 0.0452�, corresponding to MoS2

(see Table I). However, other TMDs exhibit comparable ra-
tios, and therefore our general conclusions remain valid.

A. Binary disorder

Figures 1(a) and 1(b) show the real and the imaginary parts
of the effective coupling constants λ+

0 and λ+
z in the case of

random binary disorder (4a) when λA = 1.5� and λB = 0 and
for two different values of the fraction of PDs, c = 0.1 and

FIG. 2. Average density of states in arbitrary units for binary
disorder as a function of the shifted energy E − λVCA and the fraction
of PDs when λA = 1.5� and λB = 0.

c = 0.5. Similar results are obtained for λ−
0 and λ−

z and will
be not shown. For convenience, λ+

0 − λVCA is plotted, where
λVCA = 〈λn〉av = cλA + (1 − c)λB is the effective coupling
constant obtained within the virtual crystal approximation.
Notice that λVCA is real, so only the real part of λ+

0 is shifted.
From Fig. 1(a), we observe that Re(λ+

0 ) is larger (smaller)
than λVCA when E is above (below) λVCA while Re(λ+

z ) is
negative over the whole energy range. The gap determined
from the vanishing of Im(λ+

0 ) is roughly symmetric with
respect to E = λVCA and shrinks on increasing the fraction of
PDs up to c = 0.5. It is worth stressing that Im(λ+

0 σ0 + λ+
z σz )

is negative, as expected. Figures 1(c) and 1(d) show the real
and the imaginary parts of the effective coupling constants λ+

0
and λ+

z at E = 0 as a function of the fraction of PDs for the
same values of λA and λB = 0. We observe that the deviation
of λ+

0 from the VCA prediction is more apparent at c = 0.476,
namely, when disorder is close to maximal. As shown in
Fig. 1(c), the corresponding average DOS (in arbitrary units)
reveals that the maximal deviation arises when the band edge
is located at E = 0.

After discussing the salient features of the coupling con-
stant of the effective medium, we turn our attention to the
average DOS. Figure 2 shows the average DOS ρ(E ) as a
function of E − λVCA when λA = 1.5� and λB = 0, and for
several values of the fraction of PDs. We observe that in the
limiting cases c = 0 and c = 1, namely, when the system is
ordered, the DOS remains the same when plotted as a func-
tion of the shifted energy E − λVCA. In all other cases, the
DOS smooths out near the band edges and the gap becomes
narrower compared with the ordered TMD.

B. Anderson disorder

Figures 3(a) and 3(b) show the real and the imaginary parts
of the effective coupling constants λ+

0 and λ+
z in the case of

Anderson disorder (4b) when λ = � and for two different
values of the magnitude of disorder, W = 2�/3 and W = �.
As in the previous section, λ+

0 − λVCA is plotted, where now
λVCA = 〈λn〉av = λ. From Fig. 3, we observe that Re(λ+

0 ) and
Im(λ+

0 ) are odd and even functions of the shifted energy
E − λVCA, respectively. On the contrary, Re(λ+

z ) and Im(λ+
z )
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FIG. 3. Real (solid lines) and imaginary (dashed lines) of the
effective coupling constants (a) λ+

0 and (b) λ+
z as a function of the

shifted energy E − λVCA for W = 2�/3 (black lines) and W = �

(blue lines), when λ = �. Real (solid lines) and imaginary (dashed
lines) of the effective coupling constants (c) λ+

0 and (d) λ+
z as a

function of the magnitude of disorder at E = 0, when λ = �. The
effective coupling constant obtained within the virtual crystal ap-
proximation λVCA = λ has been subtracted in panels (a) and (c) for
convenience.

are even and odd functions of the shifted energy, respectively.
The gap shrinks on increasing the magnitude of disorder W .
As in the binary disorder model, Im(λ+

0 σ0 + λ+
z σz ) is negative

(not shown in the figure). Figures 3(c) and 3(d) show the real
and the imaginary parts of the effective coupling constants
λ+

0 and λ+
z at E = 0 in the case of Anderson disorder (4b)

when λ = �, as a function of the magnitude of disorder W .
We observe that the deviation of λ+

0 from the VCA predic-
tion is more apparent on increasing W . Figure 4 shows the
average DOS ρ(E ) a function of E − λVCA when λ = � and
for several values of the magnitude of disorder. We observe
that the DOS becomes smoother near the band edges, and the

FIG. 4. Average density of states in arbitrary units as a function
of shifted energy E − λVCA and the magnitude of Anderson disorder
when λ = �.

FIG. 5. (a) Average density of states from in arbitrary units as a
function of the shifted energy E − λVCA when λ = W = �. Circles
and solid line correspond to the approximation given by Eq. (18)
and the exact result, respectively. (b) Error defined in the main text
as a function of the shifted energy, demonstrating the remarkable
accuracy of the approximation except at energies very close to the
three band edges. Shadowed area indicates the band gap.

energy gap narrows as the magnitude of disorder increases, in
agreement with observations in the case of binary disorder.

If Anderson disorder is weak (W → 0), calculations can
be largely simplified. To this end, we start from the configu-
rational average (12d) with the probability distribution (4b).
Recalling that both λ and F (z, λ) are diagonal matrices, we
get

F (z, λ) = 1

W
ln

[
1 + (λ − λ + W/2)F (z, λ)

1 + (λ − λ − W/2)F (z, λ)

]
. (17)

Expanding the right-hand side up to second order in W and
assuming that the elements of the matrix (λ − λ)F (z, λ) are
smaller than unity, we arrive at

λ = λ + W 2

12
F (z, λ) � λ + W 2

12
F (z, λ). (18)

Therefore, in the limit of weak Anderson disorder we get an
explicit equation for the coupling constant of the effective
medium λ(z) in terms of λ and W/2. Figure 5(a) presents
a comparison between the exact DOS and the DOS ob-
tained from the approximate coupling constant (18) when
λ = W = �. Although the magnitude of the Anderson dis-
order cannot be regarded as small, the agreement is excellent.
The error, used to assess the accuracy of the approximation, is
defined as follows: 100 × (ρexact − ρapprox)/(ρexact + ρapprox).
Figure 5(b) presents the error as a function of the shifted
energy, demonstrating the accuracy of Eq. (18) except at en-
ergies very close to the three band edges.

V. COMPARISON WITH EXPERIMENT

Finally, a comparison is made between the predictions of
the CPA and the DFT results reported in Ref. [41]. In that
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study, the evolution of the optical energy gap in the monolayer
alloy Mo1−xWxS2 was analyzed as a function of the W frac-
tion x. It was observed that the optical gap exhibits a nonlinear
behavior as a function of x:

EG(x) = (1 − x) EG(x = 0) + x EG(x = 1) − b x (1 − x),

(19)

with the fitting to DFT calculations yielding a bowing parame-
ter b = 0.28 ± 0.04 eV for A excitons, in good agreement with
the experimental value (b = 0.25 ± 0.04 eV). Here EG(x = 0)
and EG(x = 1) are the energy gaps of MoS2 and WS2, re-
spectively. Specifically, the energy gap of the monolayer alloy
Mo1−xWxS2 deviates from the linear interpolation scheme
predicted by the well-known Vegard’s law [42,43], corre-
sponding to b = 0 in Eq. (19). Therefore, it is established
that the energy gap decreases with respect to the MoS2 value
when x is small. This trend qualitatively aligns with the
CPA results we obtained for disordered TMDs with binary
disorder.

For the purpose of quantitative comparison, we focus
on the monolayer alloy Mo1−xWxS2 across the entire range
of W fraction x � c (see Appendix B). In the subsequent
CPA calculations, the energy gap appearing in Eq. (1),
which describes electrons in the pristine material, is as-
sumed to vary with x in accordance with Vegard’s law.
Hence

�(x) = 1
2 (1 − x) EG(x = 0) + 1

2 x EG(x = 1), (20)

with EG(x = 0) = 1.791 eV and EG(x = 1) = 1.936 eV, ac-
cording to the values reported in Ref. [41]. For the sake of
simplicity, we adopt a constant valence-band splitting param-
eter, setting α = 0.0375 eV regardless of the W fraction x.
While α varies from 0.0375 eV in MoS2 to 0.1075 eV in WS2

(see Table I), this premise does not constitute a significant
limitation to the accuracy of the results.

Taking all these assumptions into account, the CPA in-
volves only a single fitting parameter, namely, λA. The
numerical procedure we have followed is, using the bisection
method, to find the value of λA that reproduces the gap ob-
tained via DFT for x = 0.5. We have then used that same value
of λA to obtain the gap for the remaining values of x using
our CPA calculations. In this way, we have found that the
value of this parameter that yields the best agreement with the
DFT results reported in Ref. [41] is λA = 0.46 eV. Figure 6
displays the energy gap as a function of the W fraction x. We
observe that the CPA gap of the alloy deviates significantly
from Vegard’s law but is in very close agreement with that
obtained from DFT. Actually, the resulting bowing parameter
b = 0.284 ± 0.007 eV is the same within the uncertainty of
the results. Deviation of CPA results from DFT predictions
is larger upon increasing x. The CPA overestimation near x
approaching unity can be attributed to the larger valence-band
splitting parameter α in WS2 compared to MoS2. This results
in a smaller band gap than that predicted when assuming a
constant splitting parameter.

FIG. 6. Energy gap of the alloy Mo1−xWxS2 as a function of the
W fraction x. CPA results when λA = 0.46 eV and λB = 0 (blue
circles) are compared to DFT values extracted from Ref. [41] (red
circles). The error bar of the DFT value at x = 0.395 was obtained
after averaging eight configurations of randomly distributed W atoms
in the supercell in substitution of Mo atoms, being similar for the
other fractions. Dashed lines are a guide to the eye. Black solid line
shows the linear interpolation scheme according to Vegard’s law.

VI. CONCLUSION

PDs have a significant influence on the electronic states
of TMDs, leading to substantial changes in the DOS. DFT
calculations are commonly used to quantify these effects, as
they offer high accuracy and provide a detailed picture of
the local environment around the defect. However, DFT is
computationally expensive, which limits the accessible super-
cell sizes. To overcome these limitations, we have employed
the k · p approximation to describe the electronic states in
pristine TMDs. Disorder has been modeled as a regular lattice
of PDs randomly distributed over a grid. The electron-defect
interaction potential has been replaced by a separable
pseudopotential, thus allowing us to obtain a solvable model
for any arbitrary shape function. Two models of disorder have
been considered, namely, binary and Anderson-like. The CPA
was employed to calculate the average DOS as a function of
disorder strength and an analytic expression for the coupling
constant of the effective medium was obtained in the limit
of weak Anderson disorder. This method allows for an exact
solution of the problem and provides more reliable results
than other established approaches, such as the self-consistent
Born approximation, particularly in the strong-disorder
regime [40]. Notably, both disorder models examined yield
consistent results, indicating that increasing disorder strength
leads to a reduction in the energy gap. Finally, we compared
our results with available DFT data for the optical gap in
the monolayer alloy Mo1−xWxS2. We found that predictions
of the binary disorder model are in very good agreement
with DFT calculations with only a single fitting parameter,
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namely, the strength of the pseudopotential. In our model,
the deviation from Vegard’s law is attributed to the random
distribution of PDs [44], which results in a bowing parameter
that shows excellent agreement with both DFT calculations
and experimental data. Thus, our model offers the advantage
of being computationally less demanding than DFT while
still providing results that reasonably match experimental
findings.
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APPENDIX A: ONE-BAND APPROXIMATION

The so-called one-band approximation was formerly in-
troduced by Sievert and Glasser to simplify the calculations
while retaining accuracy by neglecting interband scattering
[37]. Nonetheless, extensions to more intricate situations in-
volving interband scattering have already been proposed [45].
The Green’s function operators associated to ĤM and Ĥ0 in
Eq. (7) satisfy [26]

ĜM(z) = Ĝ0(z) + Ĝ0(z)
∑

n

|ωn〉λ〈ωn|ĜM(z). (A1)

We now take into account the closure relation of the plane
waves ∑

k

| k 〉〈 k |= 1, (A2)

where 1 is the identity operator and 〈k|Ĝ0(z)|k′〉 = G0

(k, z) δk,k′ , with G0(k, z) = 1/[z − H0(k)], obtaining

〈k|ĜM(z)|k′〉 = G0(k, z)δk,k′ + λ
4π2

a2
G0(k, z) ω(k)

×
∑

K

ω∗(k + K )〈k + K|ĜM(z)|k′〉, (A3)

where K runs over the reciprocal vectors of the impurity lat-
tice. In the one-band approximation, the Fourier transform of
the shape function is assumed to vanish outside the Brillouin
zone [37,45]. In this way, we only retain the term K = 0
in the summation appearing in Eq. (A3) since the product
ω(k)ω∗(k + K ) vanishes otherwise, thereby simplifying the
calculations. Therefore,

〈k|ĜM(z)|k′〉 = D(z, λ, k)δk,k′ , (A4)

where D(z, λ, k) is defined in (12c). The translational invari-
ance of the effective medium ensures that the Green’s function
operator is diagonal in the basis of plane waves. Using the
closure relation (A2), we get

〈ωn|ĜM(z)|ωn〉 =
∑

k

〈k|ĜM(z)k〉|〈 k|ωn〉|2

= 1

S

∑
k

〈k|ĜM|k〉|ω(k)|2, (A5)

where S is the area of the TMD. After converting the sum over
k into an integration, we finally obtain (12b).

APPENDIX B: FRACTION OF IMPURITIES

The concentration of W atoms in the monolayer alloy
Mo1−xWxS2 is obtained as nW = x/A, where A = (

√
3/2)

aMoS2 and aMoS2 = 0.31 nm are the area of the unit cell and
the lattice parameter of MoS2, respectively. In our model of
binary disorder, the same concentration is expressed as nW =
c/a2 with a = 0.3 nm and, consequently, we can approximate
x � c in our calculations.
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