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Tunable single-photon quantum router
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We propose an efficient single-photon router comprising two resonator waveguide channels coupled by several
sequential cavities with embedded three-level atoms. We show that the system can operate as a perfect four-way
single-photon switch. We also demonstrate that an incident single photon propagating in one of the waveguides
can be routed into one or the other output channels; such routing can be controlled by the external classical
electromagnetic field driving the atoms. We argue that, under appropriate conditions, the efficiency of such
routing can be close to 100% within a broad operational bandwidth, suggesting various applications in photonics.
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I. INTRODUCTION

In recent years, there has been significant progress in
the control of hybrid light-matter systems at the frontier
between quantum optics and the physics of condensed mat-
ter. Some examples of these hybrid quantum systems are
electrodynamic cavities, cold atoms coupled to light, op-
tomechanical devices, and atoms embedded in quantum cav-
ities [1–4]. The coupled resonator waveguides (CRWs) pro-
vide a platform to study the light-matter interaction with
high precision [5]. Atoms in CRW circuits offer the pos-
sibility to investigate the photonic quantum transport with
very high sensitivity. Photons, in comparison with other
possible information carriers such as electrons, can sus-
tain quantum coherence for vast distances, which makes
them excellent candidates for transferring and manipulating
quantum information [6–9]. Hence single-photon transport
through CRWs has received considerable attention in the past
decade.

One of the most relevant devices for the operation of a
quantum network is a quantum router, whose primary function
in the simplest configuration is to send or route an incident
photon into one of the two output channels [10]. Recently,
there have been several theoretical and experimental proposals
for quantum routers based on several different structures, such
as CRWs [11–16], whispering gallery resonators [17–21],
waveguide-emitter systems [22,23], superconducting qubits
[24], and quantum electrodynamics systems [25,26]. In the
latter context, Zhou and co-workers [11,12] proposed an
experimentally accessible single-photon routing scheme com-
prising two quantum channels connected by a resonant cavity
with a single-type three-level atom embedded in it. It was
demonstrated that the output channel for a propagating wave
packet could be selected by applying a classical electromag-
netic field to the atom. Based on the above-mentioned works,
several proposals have emerged, such as quantum memories
and quantum gates [13,20]. However, all these proposals have
considerable limitations such as relatively low efficiency of

switching between output channels and narrow operational
bandwidth.

In the present paper we propose a device design that
circumvents the limitations mentioned above. We consider
two CRWs coupled by several sequential cavities with em-
bedded three-level atoms. We demonstrate that such a device
can operate in two different modes: (i) An incident photon
is routed into one of the four channels with equal trans-
mission probability of 1/4 and (ii) one of the two output
channels is selected by the external classical electromagnetic
field driving the atoms. In the latter case, the transmission
probability in the selected channel is close to unity within
a broad band of photon energies and a wide range of
parameters.

II. MODEL

Our proposed system is depicted schematically in Fig. 1.
The system comprises two channels, CRW a and CRW b
(shown as red and blue chains in Fig. 1), each being a
quasi-one-dimensional array of identical optical cavities with
nearest-neighbor coupling. A section of N sequential sites
of the two waveguides (numbered 1, 2, . . . , N) are coupled
via cavities with embedded three-level atoms. Each atom has
a ground state |g〉, an excited state |e〉, and a third state
|s〉. The transition |g〉 ↔ |e〉 of each of the atoms is dipole
coupled to the cavity modes of the nearest CRW a and CRW
b with coupling strengths ga and gb, respectively. The atomic
transition |g〉 ↔ |s〉 is forbidden. Finally, an external classical
controlling field of frequency ν drives the transition |g〉 ↔ |e〉
with the Rabi frequency �.

The total Hamiltonian of the system can be split into three
terms, H = Hab + HA + Hint , where Hab describes the photon
propagation through CRW a and CRW b and is given by
the tight-binding bosonic model, HA is the free Hamiltonian
of the three-level atoms, and Hint describes the interaction
between the atom, field cavities, and classical field. A Jaynes-
Cummings Hamiltonian represents this interaction term under
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FIG. 1. Schematic view of the single-photon router. (a) Two
CRWs with nearest-neighbor intercoupling. The CRWs are intra-
coupled by N cavities with embedded three-level atoms. The N
interconnected cavities constitute the scattering region of the device.
The single photon (represented by the yellow arrow) impinges on the
scattering region from the left arm of channel a. The inset shows
the atomic level scheme. The transition between the ground and
excited states |gj〉 ↔ |e j〉 is dipole coupled to the jth cavity mode
of CRW a and CRW b with strength ga and gb, respectively. The
transition between the excited and the third state |e j〉 ↔ |s j〉 is driven
by an external controlling field with Rabi frequency �. (b) Simplified
scheme of the router. The amplitudes of the transmission ta, reflection
ra, and transfers t b

← and t b
→ are represented by yellow wavy arrows.

the rotating-wave approximation. Thus, the various terms of
the Hamiltonian are given by (h̄ = 1 in what follows)

Hab =
∞∑

i=−∞
[ωaâ†

i âi − ξa(â†
i âi+1 + â†

i+1âi )]

+
∞∑

i=−∞
[ωbb̂†

i b̂i − ξb(b̂†
i b̂i+1 + b̂†

i+1b̂i )],

HA =
N∑

j=1

[ωe|e j〉〈e j | + ωs|s j〉〈s j |],

Hint =
N∑

j=1

[|e j〉〈g j |(gaâ j + gbb̂ j ) + �|e j〉〈s j |e−iνt

+ H.c.], (1)

where â†
i (âi) and b̂†

i (b̂i) are the creation (annihilation) opera-
tors of a single photon in the ith cavity of CRW a and CRW b
with frequencies ωa and ωb, respectively, ωs and ωe are the
third- and excited-state frequencies, respectively, ξa and ξb

are the nearest-neighbor couplings for the waveguide a and
b, respectively, and H.c. stands for the Hermitian conjugate.
The dispersion relations for CRW a and CRW b are given
by Ea = ωa − 2ξa cos ka and Eb = ωb − 2ξb cos kb, resulting
in energy bands with bandwidths 4ξa and 4ξb, respectively.

We consider the single-photon scattering process in the ro-
tating frame. To this end, we perform a unitary transformation

H ′ = U †HU − i U † ∂

∂t
U,

U =
N∏

j=1

eiνt |s j 〉〈s j |, (2)

which turns H into a time-independent Hamiltonian H ′ =
Hab + H ′

A + H ′
int with

H ′
int =

N∑
j=1

[|e j〉〈g j |(gaâ j + gbb̂ j ) + �|e j〉〈s j |] + H.c.,

H ′
A =

N∑
j=1

[ωe|e j〉〈e j | + ω′
s|s j〉〈s j |], (3)

where ω′
s = ωs + ν. Under this transformation, Hab remains

invariant.

III. SINGLE-PHOTON SCATTERING

The propagation of a single photon through the system
can be assessed by inspecting the energy spectrum of the
Hamiltonian H ′. This can be obtained by expressing the
single-excitation eigenstate as

|ψE 〉 =
∞∑

i=−∞

[
α(i)â†

i |0, g〉 + β(i)b̂†
i |0, g〉

+
N∑

j=1

ue, j |0, e j〉 + us, j |0, s j〉
]
. (4)

Here α(i) and β(i) are the probability amplitudes to find the
photon in the ith cavity of CRW a and CRW b, respectively,
ue, j and us, j are the probability amplitudes of the jth three-
level system in the excited and the third state, respectively,
and |0〉 is the vacuum state of the CRWs.

We obtain the coupled stationary equations for the ampli-
tudes from the eigenvalue equation H |ψE 〉 = E |ψE 〉,

(E − ωe)ue, j = �us, j + ga, jα( j) + gb, jβ( j),

(E − ωs)us, j = �∗ue, j,

(E − ωa)α( j) = ξa[α( j + 1) + α( j − 1)] + ga, jue, j,

(E − ωb)β( j) = ξb[β( j + 1) + β( j − 1)] + gb, jue, j, (5a)

where

ga(b), j =
{

0, j < 1, j > N
ga(b), 1 � j � N.

(5b)

From (5a) we obtain the coupled equations

(E − ω̃a, j )α( j) = −ξa[α( j + 1) + α( j − 1)] + Gj (E )β( j),

(E − ω̃b, j )β( j) = −ξb[β( j + 1) + β( j − 1)] + Gj (E )α( j),

(6)
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where ω̃a(b), j (E ) = ωa(b) + g2
a(b), jV (E ) and

Gj (E ) = ga, jgb, jV (E ),

V (E ) = E − ωs

(E − ωs)(E − ωe) − |�|2 . (7)

Under the standard scattering boundary conditions, a plane
wave incident from −∞ in the CRW a [see Fig. 1(b)], the
photon amplitudes in the two channels can be written as

α( j) =
{

eika j + rae−ika j, j < 1
taeika j, j > N,

β( j) =
{

t b
←e−ikb j, j < 1
t b
→eikb j, j > N,

(8)

where ra and ta are the reflection and transmission amplitudes
in channel a, and t b

← and t b
→ are the backward and forward

transfer amplitudes in channel b, respectively [see Fig. 1(b)].
Hereafter we address the seemingly most favorable case of

the maximum overlap between the energy bands of the two
CRWs: setting ωa = ωb = ω0 and ξa = ξb = ξ . The nearest-
neighbor coupling ξ will be used as a unit of energy through-
out the paper. Additionally, we consider equal atom-to-CRW
mode couplings ga, j = gb, j = g.

In order to solve Eq. (6) the following transformation is
performed: Instead of considering the photon amplitudes α( j)
and β( j) in the physical channels a and b, we consider the
symmetric (S) and antisymmetric (A) linear combinations
of them: ψ±( j) = α( j) ± β( j). In the S-A representation,
Eqs. (6) reduce to

(E − ε+)ψ+( j) = −ξ [ψ+( j + 1) + ψ+( j − 1)],

(E − ε−)ψ−( j) = −ξ [ψ−( j + 1) + ψ−( j − 1)], (9)

where the effective site energies are ε+
j = ω0 + 2Gj (E ) and

ε− = ω0.
In the S-A representation, the scattering boundary condi-

tions are written as

ψ+( j) =
{

eik+ j + r+e−ik+ j, j < 1
t+eik+ j, j > N,

ψ−( j) =
{

eik− j + r−e−ik− j, j < 1
t−eik− j, j > N,

(10)

where t± and r± are the transmission and reflection amplitudes
in the virtual A-S channels. From Eqs. (9), evaluated at
the boundary of the scattering region ( j = 0, j = 1, j = N ,
and j = N + 1), along with Eqs. (10), one can obtain closed
expressions for the transmission t± and reflections r±. As the
A channel is equivalent to a free channel with energy ω0, then
the incident wave is transmitted without reflection and unity
transmission amplitude, i.e., r− = 0 and t− = 1. Then r+ and
t+ are obtained

r+ = eik (cos k − cos k+)

cos k cos k+ − 1 − i cot(Nk+) sin k sin k+
,

t+ = e−ikN sin k sin k+
sin k sin k+ cos(Nk+) + i(cos k cos k+ − 1) sin(Nk+)

,

k+ = arccos

(
−E − ε+

2ξ

)
if

∣∣∣∣E − ε+

2ξ

∣∣∣∣ � 1. (11)

+

−

t+

t−

r+

21 N0 N + 1 N + 2−1

FIG. 2. Schematic representation of the virtual symmetric and
antisymmetric channels labeled with + and −, respectively. The
amplitudes of the transmission t+ and t− and reflection r+ are
represented by yellow wavy arrows.

Once transmission and reflection amplitudes in the virtual
S and A channels are known, one can obtain these quantities
for the physical channels a and b in the following way:

ra = t b
← = 1

2 r+,

ta = 1
2 (t+ + 1),

t b
→ = 1

2 (t+ − 1). (12)

Reflection, transmission, and transfer probabilities are com-
puted as Ra = |ra|2, Ta = |ta|2, and T b

← = |t b
←|2 and T b

→ =
|t b

→|2. The scattering amplitudes satisfy the standard flow
conservation condition Ra + Ta + T b

← + T b
→ = 1.

The model in the S-A representation is shown schemati-
cally in Fig. 2. The S channel is analogous to an array of N
nanowires with one or two sites side coupled to a quantum
wire [27] or a CRW with embedded three-level atoms [28].
Note that S and A channels are decoupled. The effective site
energy ε+

j of the symmetric channel is renormalized with
respect to ω0 within the scattering region, which results in
scattering in such a channel. Contrary to that, the site energy
remains constant in the A channel, resulting in the free wave
propagation in it. These considerations are crucial for the
explanation of some effects that we discuss in the following
sections.

IV. SINGLE-PHOTON SPLITTING

First, we address the simplest case of zero control field
(� = 0) when the third states |s j〉 are decoupled from the rest
of the system. In this case, an incident photon is scattered by
a set of cavities coupled by N two-level atoms.

Figure 3 shows the transmission, reflection, and transfer
probabilities as functions of the incident energy E for the
resonant case ωe = ω0 = 0, g = 0.5, and different values of
the number of atoms N . The spectra manifest a very in-
teresting feature: They are degenerate at the center of the
band (E = 0), that is, all four probabilities are equal to 1/4.
The latter equality means that after scattering a photon can
leave the system through either of the four channel branches
with equal probability. The system can be operating therefore
as a perfect “splitter” of a photon with this energy. As the
number of atoms increases, a flat subband is formed about
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FIG. 3. Spectra of single-photon transmission Ta (solid black
line), reflection Ra (red dashed line), and transfers T b

→ (blue dashed
line) and T b

← (green dotted line). The spectra are calculated for
� = 0, ωs = ωe = ω0 = 0, g = 0.5, and different numbers of atoms
N (specified in the panels).

the degeneracy point (E = ωe = 0). Within this subband the
transmissions, reflections, and transfers remain very close to
1/4. The subband is well defined for arrays with N � 3 and
its width grows as N increases and almost saturates for N = 5.

Another interesting feature of the transmission spectra in
Fig. 3 is the formation of sidebands of high forward transfer
probability into the channel b (T b

→) and, consequently, low
transmission probability Ta. Figure 3(b) shows perfect for-
ward transfer into channel b (T b

→ = 1) at certain values of
the energy of the incident photon; see the transfer peak at
E ≈ ±0.6. With increasing values of N , two forward transfer
subbands are formed, as can be seen in Figs. 3(c) and 3(d)
for E � −1 and E � 1. As can also be seen from Fig. 3(d),
broad peaks of high transmission Ta (and low transfer T b

→)

Tb

0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Density plot of the probability of forward transfer T b
→ as

a function of the incident photon energy E and the number of atoms
N . The black dashed line indicates the optimal system configuration
of N = 12 atoms. The spectra are calculated for ωe = ωs = ω0 = 0,
g = 0.5, and � = 0.

FIG. 5. Single-photon transmission Ta (solid black line), reflec-
tion Ra (red dashed line), and transfer T b

→ (blue dashed line) and T b
←

(green dotted line) spectra as a function of the incident energy E . The
spectra are calculated for the parameters � = 0, ω0 = ωs = ωe = 0,
g = 1.5, and different numbers of atoms specified in the panels.

appear in the vicinity of high transfer subbands; see the peaks
of Ta at E ≈ ±0.5. Such high forward transfer subbands
having neighboring peaks of high Ta are very useful for photon
routing or switching, which we discuss in the next section.

Next we look for a system configuration which would be
most appropriate for photon routing. To this end, we show in
Fig. 4 the transfer spectrum as a function of the photon energy
E > 0 and the number of atoms N . Here the configuration
optimal for photon switching seems to be attained for N = 12,
in which case both the sideband of high transfer (dark red
region) and the neighboring subband of low transfer (dark
blue region) are relatively broad.

Figure 5 shows the transmission, reflection, and transfer
spectra as a function of the incident photon energy E for
g = 1.5 and different numbers of the atoms N . Here Ta, Ra,
T b

←, and T b
→ remain constant at 1/4 within a broader subband

compared to the previous case of g = 0.5. As N increases, the
edges of the subband become better defined and the bandwidth
increases and saturates for N � 5 at a value on the order of 2g
[see Figs. 5(c) and 5(d)].

In the presence of the external electromagnetic field (� �=
0), the scattering region comprises sections of the CRWs cou-
pled via N three-level systems. Figure 6 shows transmission,
transfer, and reflection spectra as a function of the photon
energy E and different numbers of atoms N for � = 0.2.
Contrary to the previous case of � = 0, two flat almost degen-
erate 1/4 subbands are formed. This time they are centered at
E = ±�, which suggests that their position can be controlled
by the external field. The latter feature is very promising from
the point of view of real-time control of photon routing or
switching, as we argue below.

Next we discuss the flat subband formation. As we have
demonstrated in the preceding section, the virtual S and A
channels are decoupled, as shown schematically in Fig. 2.
First, the A channel is equivalent to a free channel with energy
ω0, where the incident wave is transmitted without reflection
and with unity transmission amplitude, i.e., r− = 0 and t− = 1
and then |t−|2 = T− = 1 and |r−|2 = R− = 0, which results
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FIG. 6. Single-photon transmission Ta (solid black line), reflec-
tion Ra (red dashed line), and transfer T b

→ (blue dashed line) and T b
←

(green dotted line) spectra as a function of the incident energy E . The
spectra are calculated for the parameters � = 0.2, ω0 = ωs = ωe =
0, g = 0.5, and different numbers of atoms specified in the panels.

in the equality Ra = T b
← [see Eqs. (12)]. Second, the effective

site energy within the scattering region of the S channel is
given by

ε+
j = ε+(E ) = ω0 + 2g2V (E ), 1 � j � N.

The function V (E ) [defined in Eq. (7)] has poles E±:

E± = ωe + ωs ± D

2
, D =

√
(ωe − ωs)2 + 4�2. (13)

Therefore, the site energy ε+(E ) diverges at the poles and
effectively breaks the channel, which results in the total
reflection (or zero transmission) in the S channel. The phys-
ical origin of the vanishing transmission is the Fano effect
[29,30]. A photon has two virtual paths in the S channel: a
direct one without scattering and an indirect path with it. The
destructive interference between the two paths results in the
zero transmission [28].

In the simplest case ω0 = ωs = ωe = � = 0, the two poles
are degenerate and the transmission in the S channel vanishes
at E = 0. In the most general case, the position of the poles
depends on ωe, ωs, and �.

Finally, if |(E − ε+)/2ξ | > 1, the transmission t+ in the S
channel can be rewritten as

t+ = e−ikN sin k sinh κ+
D+

,

D+ = sin k sinh κ+ cosh(Nκ+)

+ i(cos k cosh κ+ − 1) sinh(Nκ+),

κ+ = cosh−1

(
−E − ε+(E )

2ξ

)
. (14)

If E is sufficiently close to a pole, κ+ � 1 and we can approxi-
mate sinh κ+N 
 cosh κ+N 
 exp(κ+N )/2 and consequently
the transmission amplitude scales as

t+ ∼ exp(−κ+N ) � 1.

As the number of atoms N increases, the region of en-
ergies where this approximation is valid becomes broader
and the forbidden transmission subband is formed in the S

FIG. 7. Probabilities of (a) and (b) transfer T b
→ and (c) and (d) transmission Ta as a function of photon energy E and the control field Rabi

frequency �, calculated for N = 12, g = 0.5, ω0 = ωe = 0, and (a) and (c) ωs = 0 and (b) and (d) ωs = −0.6.
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channel. Within this subband t+ → 0 and r+ → 1 and then,
from Eqs. (12), one obtains ra = ta = t b

← = −t b
→ ≈ 1/2 or

equivalently Ra = Ta = T b
← = T b

→ ≈ 1/4. The latter equality
describes the flat bands in Figs. 3, 5, and 6.

The flat bands are formed about a resonance (or rather
antiresonance) energy E± and their widths are proportional to
the atom-to-CRW coupling constant g. A physical explanation
of the band formation is the following: The strict degeneracy
occurs due to the Fano effect only at the resonance whose
position is determined, in particular, by the atomic transition
energy ωe [see Eq. (13)]. Note that a resonance also exists in
the case when only one atom is connecting the two CRWs
[11,12]. However, as more atoms are added to the system, a
band of N almost resonant states is formed about ωe. This
results finally in the formation of broad flat almost degenerate
bands. Quite naturally, the atom-to-CRW coupling constant
g determines the width of these bands. As the number of
atoms N increases, this width grows and saturates at N � 5.
Both effects can be seen in Figs. 3–6. The advantage of using
various atoms also becomes clear: Instead of a relatively nar-
row one-atom resonance which can be very sensitive to small
variations in parameters or external noise, on the contrary, a
system with many atoms provides a broad operational band
which can be expected to be more robust to small fluctuations.

V. CONTROLLED PHOTON ROUTING

In this section we discuss the possibility of control of the
photon propagation. To this end, we show in Fig. 7 the forward
transfer probability T b

→ [Figs. 7(a) and 7(b)] and transmission
probability Ta [Figs. 7(c) and 7(d)] as a function of photon
energy E and the control field � calculated for N = 12
and ωs = 0 [Figs. 7(a) and 7(c)] and ωs = −0.6 [Figs. 7(b)
and 7(d)]. In Figs. 7(a) and 7(b) we observe two extended
transmission subbands in T b

→. These regions, indicated in
dark red, correspond to a range of values of E and � in
which the transfer coefficient T b

→ is unity or nearly unity. A
single incident photon with energy within these regions is
always transferred to channel b. Such range corresponds to
blue regions in Figs. 7(c) and 7(d), where the transmission
coefficient Ta vanishes or is close to zero. This indicates that
there is no transmission in the CRW a within such a region
of parameters. In addition, there are two extended regions in
Fig. 7 (indicated in light blue) where the systems act as a
single-photon splitter.

Figure 7 demonstrates the possibility of selecting one of
the two physical channels: At some particular energies, the
transfer probability T b

→ can be changed from low to high by
changing the external field �. That is, when the classical field
is turned off (� = 0), a single photon from channel a exits by
this channel with probability unity (Ta = 1) [see the red region
in the inset of Fig. 7(d)]. When the external field is applied
with characteristic parameters inside the red region of the inset
of Fig. 7(b), an incident single photon can be transferred to
the CRW b with probability T b

→ = 1. As a consequence, the
routing of a single photon from CRW a to CRW b can be
controlled by the external field. Control of routing can be seen
more clearly in Fig. 8, where the cross sections of Fig. 7 are
shown for the zero [Figs. 8(a), 8(c), and 8(e)] and nonzero
[Figs. 8(b), 8(d), and 8(f)] control field �. In Figs. 8(a) and

FIG. 8. Cross sections of Fig. 7: probabilities of transmission Ta

(solid blue line) and transfer T b
→ (dashed red line) as a function of the

photon energy E , calculated for N = 12, g = 0.5, ω0 = ωe = 0, and
different values of the energy of the third atomic level ωs and control
field � (indicated in the panels).

8(b), the probabilities Ta ≈ 1 and T b
→ ≈ 0 when the classical

field is off (� = 0), while Ta ≈ 0 and T b
→ ≈ 1 for the field

� = 0.85. Figures 8(a) and 8(b) show this effect when the
energy of the middle state is resonant with the energy of the
excited state. This also occurs in Figs. 8(c) and 8(d), where
the energy of the intermediate and excited states are detuned.
A case of the reverse switching is shown in Figs. 8(e) and 8(f),
where Ta ≈ 0 and T b

→ ≈ 1 when the classical field is turned
off and Ta ≈ 1 and T b

→ ≈ 0 when the classical field with � =
1.35 is on.

The two latter figures suggest that in the degenerate case
of ωs = ωe = 0, relatively high values of the control field are
necessary for routing. However, if the energy of the third
atomic level (ωs) is sufficiently detuned from that of the
excited state (ωe), then the transmission spectra become asym-
metric and manifest regions with very inclined alternating
bands of high and low transmission for relatively low values
of the control field � (see the insets of Fig. 7). Thus, the
transmission spectra can be engineered in such a way that
the photon propagation can be controlled by lower classical
field, which is generally advantageous. Such a possibility is
demonstrated in Figs. 8(c) and 8(d).

Controlled photon routing or selection of the output chan-
nel is possible because all spectral features shift together with
the flat bands (see Fig. 7). As we have argued above, the
positions of the flat bands are determined by the poles E± of
the function V (E ), which depend on the Rabi frequency �

[see Eq. (13)]. Thus, by changing the Rabi frequency �, the
whole spectra can be shifted, switching the system from a high
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transmission to a high transfer state or vice versa, controlling
the photon propagation.

VI. CONCLUSION

We studied single-photon transport in a system comprising
two cavity resonator waveguides coupled via N three-level
atoms. One of the allowed atomic transitions is dipole coupled
to resonator modes, while the other is by an external classical
control field. We calculated the transmission, reflection, and
transfer spectra for the case of the maximum overlap between
the two propagation bands of the waveguides. We showed
that the spectra manifest broad flat bands within which an
incident photon can scatter and leave the system through any
of the four branches of the two channels with equal probability
(1/4). Thus, the system can operate as a four-way photon
splitter. The width of the flat bands is determined by the
atom-to-waveguide coupling constant, while the positions of
the bands depend on the energies of atomic states and the

amplitude of the control field. The latter opens a possibility to
tune the system, changing its transmission and transfer spectra
by the external field, which also means that a photon propa-
gating in the input channel can be routed into one or another
output channels selected by the control field. Therefore, the
system can operate also as a single-photon switch or router.
In comparison with earlier designs of photon routers, our
proposed systems have significant improvements, such as a
higher routing efficiency and a considerably broader operation
bandwidth. Such features make the device more robust and
less sensitive to small fluctuations or external noise.
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