PHYSICAL REVIEW B 88, 155423 (2013)

Strong spin-dependent negative differential resistance in composite graphene superlattices
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We find clear signatures of spin-dependent negative differential resistance in compound systems comprising
a graphene nanoribbon and a set of ferromagnetic insulator strips deposited on top of it. The periodic array of
ferromagnetic strips induces a proximity exchange splitting of the electronic states in graphene, resulting in the
appearance of a superlattice with a spin-dependent energy spectrum. The electric current through the device can
be highly polarized and both the current and its polarization manifest nonmonotonic dependence on the bias
voltage. The device operates therefore as an Esaki spin diode, which opens possibilities to design new spintronic

circuits.
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I. INTRODUCTION

Since the pioneering work by Esaki,' quantum tunnel-
ing and negative differential resistance (NDR) have been
the underlying principle of operation of various quantum
devices.>™ NDR is often related to the resonant tunneling of
carriers; when the chemical potential of a lead approaches
one of the resonant levels of a device, the current [ in-
creases. However, the resonant level position can depend on
the applied voltage V, which can finally drive the system
out of resonance. Then, the current decreases dramatically
with a further increase of the voltage. The resulting 7-V
characteristics are typically N-shaped and include a region
with NDR. Such a conductance anomaly can, for example, be
observed in semiconductor heterostructures,? semiconductor
superlattices,” conductor/superconductor junctions,® carbon
nanotubes,’ molecular systems,4 and at the atomic scale.?

Due to its remarkable charge transport properties’ and
long spin-coherence length,'%!# graphene is a very promising
material for spintronics.'>!® Graphene nanoribbons (GNRs)
with tailored edges (zigzag or armchair) provide means to
generate and manipulate spin-polarized electrons.!” In this
regard, signatures of NDR for spin-down electrons in Be-
doped zigzag GNRs have already been found by Wu et al.,'
where spin-polarized edge states play an important role.

Here, we consider a spin-dependent superlattice realized
by ferromagnetic insulator strips!® deposited on top of an
armchair GNR. Similar proposals on (ferromagnetic) super-
lattices of graphene have been presented recently. Yu et al.*°
have studied a superlattice realized by stubs in the shape
of a zigzag GNR with a ferromagnetic insulator on top
of the whole system. They found strongly spin-dependent
minibands and minigaps, but they did not study the effect
of a bias voltage, nor have they found NDR. Niu et al.?' and
Faizabadi et al.?*> have investigated a superlattice made of
gated ferromagnetic strips on top of graphene. However, the
finite width of the GNR and the quantization of the transverse
momentum was not taken into account. Instead, they took
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the incident angle as a free parameter. They found that spin
polarization of tunneling conductance and magnetoresistance
exhibit oscillatory behavior as a function of the gate voltage,
but they did not consider the bias voltage either. Finally,
Ferreira et al.”® studied an armchair GNR under a spin-
independent superlattice and a bias field, which leads to a
spin-independent NDR effect.

In this paper we propose a graphene-based device whose
I-V characteristics show spin-dependent NDR with high
peak-to-valley ratios, which could be an important building
block for future spintronic devices. The structure of the paper
is as follows. In Sec. II we present the setup of a gapped
armchair GNR with several strips of a ferromagnetic insulator
on top of it, which creates a spin-dependent superlattice. We
compute the stationary wave function across the sample and
the transmission coefficient for a given spin, energy, and
bias voltage. The resulting current-voltage characteristics of
the device, comprising a spin-filtering effect and a strong
spin-dependent NDR, are discussed in the subsequent Sec. III,
while Sec. IV concludes the paper and provides an outlook on
possible further developments.

II. SETUP AND FORMALISM

The proposed system is composed of a rectangular GNR of
width W >~ 9.8 nm, connected to source and drain leads, and
N = Srectangular strips of a ferromagnetic insulator arranged
periodically on top of the GNR (see the upper panel of Fig. 1).
As we discuss later, this number of ferromagnetic strips is
enough to reveal clear signatures of spin-dependent NDR. The
width of the strips is @ = 23.9nm and the spacing between
them is b = 55.8 nm. It is known that both the width and the
edge type of a GNR strongly affect its electronic properties.
Experimental evidences*® and ab initio calculations®> show
that the spectrum of a GNR with armchair edges has a gap,
which is inversely proportional to the width W and depends
on the remainder (2W/apmod 3), where ayp = 0.246nm is
the lattice constant, i.e., the width of the graphene lattice
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FIG. 1. (Color online) The upper panel shows the GNR connected
to source (S) and drain (D) leads, with N = 5 perpendicular strips of a
ferromagnetic insulator (green bars) on top of it. The model potential
profiles for spin-up (dashed red lines) and spin-down (dotted blue
lines) electrons in the unbiased and biased device are shown in the
middle and lower panels, respectively.

hexagon. Contrary to GNRs with zigzag edges, the dispersion
relation of the armchair GNR is centered around k = O.
This is advantageous for tunneling structures because the
resonant levels are expected to be broader and less affected
by disorder.’® We therefore restrict ourselves to the armchair
GNRs.

EuO can be used as the ferromagnetic insulator for the
superlattice; this material has been studied in conjunction
with graphene both experimentally?’-*® and theoretically.'’
The proximity exchange interaction between magnetic ions
in the strips and charge carriers in the GNR can be described
as an effective Zeeman splitting +A., of the spin sublevels."”
There is still no consensus on the magnitude of the exchange
splitting amplitude A in graphene. We use A = SmeV,
which lies in the range of values known from the literature
(3-10 meV)."?2%30 We have checked that our results do not
change qualitatively if we use a different value of A, within
the known range.

Because the proximity exchange interaction has the char-
acteristic length scale of one atomic layer, the splitting is
induced only in the regions of the GNR which are just below
the ferromagnetic strips. Therefore, for the chosen system
geometry, a spin-up (spin-down) electron propagating along
the sample will be subjected to a potential comprising a
periodic set of rectangular barriers (wells), as plotted in the
middle panel of Fig. 1. In other words, the array of the
ferromagnetic strips creates a spin-dependent superlattice. We
note that similar systems manifesting NDR have been studied
in Ref. 23, but the superlattice potential was supposed to be
induced by electrostatic gates, so all characteristics were spin
independent.

A. Tight-binding method

A simple tight-binding Hamiltonian of a single electron in
the p, orbitals of graphene is widely used to model GNRs. For
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low-energy excitations, i.e., energies close to the Dirac point,
hopping can be restricted to the nearest neighbors. Then, the
Hamiltonian can be written as

H=—1) |+ ali)il+o by D)l (1)
) i iel

Here |i) is the ket vector of the atomic orbital of the ith
carbon atom, + = 2.8 eV is the hopping between neighboring
atoms, the full set of which is denoted as (i, j). The on-site
energy is the sum of the following two terms: the bias-induced
electrostatic potential ¢; at the position of the ith atom (see
Sec. IIIB) and the spin-dependent exchange-interaction Agx
due to the ferromagnetic strips, with o = +1 for spin-up and
spin-down electrons. The exchange-interaction is induced only
at the atoms that are in direct contact with the ferromagnetic
strips (the full set of them is labeled as £ in the above equation).
The on-site energy is sketched, for zero and finite bias, in the
middle and lower panels of Fig. 1, respectively.

The wave function in the GNR can be obtained using
the quantum transmission boundary method.*"*> This is
accomplished by assuming semi-infinite leads, whose modes
are calculated using an effective transfer-matrix approach.
Then, both the ingoing and outgoing wave functions are
computed as linear combinations of propagating plane waves
at a given energy, and the corresponding amplitudes determine
the spin-dependent transmission probabilities 7.

B. Dirac theory

For not too narrow GNRs, the low-energy excitations can
be treated very efficiently within the Dirac approximation.3*3>
Boundary conditions of GNRs require the wave function to
vanish on the (fictitious) sites just outside the GNR, i.e., at
y =0and y = W + ay, where the y axis is perpendicular to
the direction of the GNR and the lower edge of the GNR is
located at y = ap/2 [see Fig. 2(a)], where qy is the lattice
period along the y direction. In the case of armchair GNRs,
this affects both sublattices and the boundary conditions can
be fulfilled by a superposition of two states from different
valleys with the same energy E = hvp(k: + k)'/* and equal
longitudinal momentum #ikj, but with opposite transverse
momentum +7%k |, measured from the Dirac points.”’36 Here
vr is the Fermi velocity in graphene. Note that the effective
description given by the Dirac equation holds as long as
the k- p approximation remains valid, i.e., for not too
narrow GNRs.

Since the valley momenta K and K’ can be chosen parallel
to k_, the transverse wave function can be written ¢, (y) =
sin[(K + k1 )y]where K = 4m /3ay. This function is evaluated
on the honeycomb lattice with y € Nay/2 and oscillates
rapidly. The transverse momentum k , however, is small and
quantized by the conditions ¢ (W + ag) = ¢1(0) = 0. The
allowed values for k, are given by (K + k1,)(W + ay) = Zm,
and the spectrum reads

E, (k) = hvp /K3, + ki )

Taking into account that W is an integer multiple of ay/2,
one finds that the spectrum is gapless if!’

W =(Q@n; + Dap/2, n; eN. 3)
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FIG. 2. (Color online) (a) Scheme of a GNR of width W = 8a,.
The boundary conditions for wave functions can be obtained by
adding two rows of atoms (plotted in gray) at y =0 and W + ao
and setting the wave function to O in those points. (b) Transmission
across a series of M potential steps. The incident plane wave with
amplitude Ay splits into a reflected and a transmitted component with
amplitudes By and A1, respectively.

For asymmetric armchair GNRs, as in Ref. 36, n; is even. For
symmetric armchair GNRs, W is an integer multiple of ay and
ny is odd, such that W = (3n — 1)ap, n € N implies a gapless
spectrum.

In real samples there are small gaps even in the case (3),
which are due to edge effects>*? not included in the simple
Dirac ansatz nor the homogeneous tight-binding formulation.
In this work we consider symmetric armchair GNRs of width
W = nay, where the integer 7 is different from 3N — 1, e.g.,
W = 40ay. In this case, there is a band gap already due to the
above reasoning, and the edge effects are negligible. Then, the
allowed values of the transverse momentum are

mn

— n=1,245"78, ..., 4
3(W + ap) .

|kLn| =

and the half gap is Eg = E(0) = whvg/[3(W + ap)] =
61.9 meV. In the following, we will consider only the lowest
transverse momentum k| | and omit the index 1.

C. Transfer-matrix description of transmission

For potentials depending only on the longitudinal coor-
dinate x, the transverse momentum k, together with the
wave function ¢, (y) is conserved, and it suffices to solve
for the longitudinal wave function ¢;(x). We consider the
transmission across a piecewise constant potential profile, as
sketched in Fig. 2(b). The solution of the Dirac equation for
each spin 0 = %1 and in each interval of constant potential
value V is the superposition of two counterpropagating
sublattice pseudospinors

e\ O\
1/fll(x)zf“<_em/z ¢+ B _ei0f2 € b (5)

withtan® = ky/k, and kj = [(E — V)?/(hvg)* — k3 ]'/%. The
solution may be evanescent because Eq. (5) holds also for
|E — V| < hvglk, |, when k and 6 become imaginary. Then,
the general form of the wave function in each slab j with
potential V; and momentum kj = k; is

e d02 N (AN (A
(_eia,-/z _6591/2><Bj(x)) o Sj<3j(x)>’ ©
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where A;(x) = Aje'** and Bj(x) = B;e~"%*, such that

(Aj(ijrl)) :Gj<Aj(xj))7 o
Bj(xjy1) Bj(x;)

with G; = et/&i+17%)%: - At each junction, k; changes but the
wave function remains continuous:

Aj(x;)) Aj-1(x;)
S,( J f):s“( IR )
Bj(x;) Bj_1(x;)
With the help of Egs. (7) and (8), one writes down the transfer
matrix for the whole system

(2;:1) :s,;,LIGM...GzGIS()(;}z), ©)
with G; = 5,G;S;".

For the transmission problem depicted in Fig. 2(b), the
boundary condition is no incoming electron from the right,
Byry1 = 0. The reflection probability at the left is the ratio
of reflected to incident current, R = |By|?>/|Ao|>. For the
transmission probability one has to take into account that the
longitudinal momenta ky,; and kg are different if V) # V41,
such that the ratio of transmitted to incident current is T =
(A p+1Pkar0) /([ AoPko).

D. Band structure of the unbiased lattice

The Dirac formalism allows us to analytically study the
system in the limit N — oo, when the energy regions with
high transmission become transmission bands surrounded by
insulating bands with 7' = 0. For an unbiased lattice with
identical barriers of width a and spacing b, there are only
two different transfer matrices involved, G, and G,. In the
limit N — oo, the superlattice eigenfunctions have the Bloch
phases exp(+£igl), that are the eigenvalues of the transfer

matrix G = G,G, over one lattice period/ = a + b. Thus, the
dispersion relation E(q,k ) is obtained as cos(gl) = Tr(G)/2,
or again®’3%

cos 6, cosf, — 1

cos gl = cos k,a cos kb + sink,a sin k,b.

sin 6, sin 6,
(10)

It |Tr(€})/2| > 1, there is no propagating solution with real-
valued ¢, and E falls into the band gap of the superlattice. In
Fig. 3(a), the transmission bands for both spin channels are
indicated by the extended bars on the bottom.

E. Spin-polarized current at finite bias

Because the superlattice potential depends on the carrier
spin, the transmission probability 7 is also spin-dependent.
Hereafter, + (—) signs and red (blue) colors in all figures
correspond to spin-up (spin-down) electrons, respectively. In
order to to calculate the spin-dependent electric currents 7y
across the sample from the transmission probabilities 7.y, we
use the Landauer-Biittiker scattering formalism*

2
n= / To(E,Vsp) f(E — ps) — f(E — up)IdE,

where f(€) = [exp(e/kgT)+ 1]~ is the Fermi-Dirac dis-
tribution at temperature 7. We address the current and its
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FIG. 3. (Color online) (a) Transmission probabilities 7. as func-
tions of energy for spin-up (red) and spin-down (blue) electrons. There
is a very good agreement between the Dirac approximation (solid
lines) and the tight-binding calculation (dotted lines). Horizontal bars
in the lower part of the figure indicate the energy bands of the infinite
superlattice, obtained from (10). (b) Transmission polarization Py as
a function of energy for different numbers N of ferromagnetic strips.

polarization at a finite bias voltage Vsp between source
and drain, whose chemical potentials, us = u + eVsp and
Up = W, have the same offset u from the Dirac point. Using 7
and /_ we can calculate the total current / = I + I_ through
the device, as well as its spin-polarization P = (I — I_)/I.

III. RESULTS

A. Transmission at zero bias

Figure 3(a) shows the transmission probability through the
unbiased sample calculated within the Dirac approximation
(solid lines) and the full tight-binding model (dotted lines).
Already for the relatively small number N =5 of strips,
regions of high transmission coincide quite well with the bands
of the infinite superlattice introduced in Sec. II D (and indicated
by the horizontal bars at the bottom of the figure). The origin of
the energy for each curve is set to the lowest subband bottom
energy Ey calculated within the corresponding model. The
figure demonstrates very good agreement between the two
approaches. The Dirac approximation overestimates slightly
the value of Ej (by 0.3%) but is accurate enough for our
purposes. Unless stated otherwise, in the following, we use
the Dirac approximation since it demands less computational
resources.

The transmission is spin-dependent, which manifests itself
clearly in the transmission polarization, defined as Pr =
(Ty — T-)/(T+ + T-) and shown in Fig. 3(b). As the number
of strips is increased, the transmission probability at energies
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outside the transmission bands vanishes rapidly, thus leading
to an enhanced polarization. For N > 3, the transmission po-
larization noticeably changes within narrow energy intervals.
Such abrupt polarization switching can be expected only if the
overlap between transmission bands corresponding to different
spins is small, as seen in Fig. 3(a). The overlap is determined
by different factors: the splitting A and the geometrical
parameters a and b, which should be chosen carefully in
order to observe a pronounced switching and filtering effect
in a real device. Such a choice can be made, for example, by
analyzing the band structure of the infinite lattice within the
Dirac approximation given by (10).

B. Spin-polarized current at finite bias

As depicted in the lower panel of Fig. 1, we assume the bias
voltage to drop along the sample in a roughly Ohmic manner.
For simplicity, we assume that the voltage drops occur at the
edges of the EuO strips only, resulting in a piecewise constant
potential profile as shown in the lower panel of Fig. 1. Such
a model potential allows us to use the efficient Dirac transfer
matrix method discussed in Sec. II C. There may be additional
voltage drops at the source and drain contacts, which are just
outside the middle and lower panels of Fig. 1. With the term
bias voltage Vsp, we refer only to the voltage drop across the
GNR. The exact potential profile can in principle be obtained
from a self-consistent electrostatic potential calculation, but
that would go beyond the scope of this work. We note that,
since the desired potential profile ¢; is spin independent, it
can always be adjusted via gate voltages. In the Appendix
we demonstrate that the spin-dependent transmission does not
depend crucially on the details of the biased potential profile.

The bias results in a distortion of the transmission bands:
the bands shift, quench, and finally disappear as the voltage
increases, as is seen in Figs. 4(a) and 4(b) compared to
Fig. 3(a). The polarized currents I as functions of Vgp are
plotted in Figs. 4(c) and 4(d). The spin-dependent transmission
bands and their distortion due to the bias lead to NDR regions at
different values of the bias voltage for different spins. For spin
down, the NDR occurs at a lower bias and the negative slope
of the current-voltage curve is particularly steep, which is due
to the fact that the first transmission peak remains very sharp
until it disappears [Figs. 4(a) and 4(b)]. The lowest spin-up
transmission band gets washed out before it disappears at a
higher bias, resulting in the less pronounced NDR.

We further address the total current / through the device,
as well as its spin-polarization P. Figures 4(e) and 4(f) show
that the total current / also manifests NDR for two different
biases, corresponding to the NDR regions of /_ and 7. The
current polarization shows an initial range with negative values
followed by a second region dominated by the spin-up current.
As the bias increases further, the polarization decays and
finally vanishes. Note that the current is highly polarized for
certain biases, which proves that the device can operate as
a spin filter. On the other hand, because the characteristics
I,.(Vsp) and I_(Vgsp) are very different, if the source feeds
partially polarized electrons, the total current through the
device would depend on the degree of the electron polarization.
The latter opens a possibility to determine the polarization of
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FIG. 4. (Color online) Panels (a) and (b) show that the transmission bands for both spins at finite bias Vsp are shifted, quenched and
distorted compared to the unbiased case [Fig. 3(a)]. Panels (c) and (d) display the spin-polarized currents /. as functions of the bias Vsp, for
T = 4K and different values of the chemical potential: 4 — Ey = OmeV (dashed), 0.5 meV (dotted), and 1.0 meV (dash-dotted) lines. Finally,
panels (e) and (f) show the total current / = I + I_ and the current polarization P = (I, — I_)/I for the same parameters. All the intensity

graphs use the same arbitrary scale.

a current by purely electrical measurements, which is a very
promising application.

We have considered an ideal device with perfect
rectangular GNR and strips, while different imperfections
and perturbations can introduce disorder into the system and
affect the electric current and its polarization.® There are
different possible sources of disorder, for example, charged
impurities in the substrate or defects of the device fabrication.
The former results in an additional smooth electrostatic
potential and can hardly deteriorate the transmission through
the device to a large extent. However, the effect of the latter
on the transport properties can be stronger. To estimate
the possible impact of the fabrication imperfections on the
predicted effects, we considered disordered superlattices
with randomly varying strip widths and spacings, up to
20%. Our calculations (not shown here) demonstrated that
the transmission bands are affected by the disorder to a
comparable degree for both spin up and spin down electrons,
which suggests that a moderate disorder would not seriously
deteriorate transport and polarization properties of the device.
The current magnitude remains almost the same, and the NDR
turns out to be robust under the effects of disorder as well.

IV. CONCLUSIONS

In summary, we propose a graphene-based device compris-
ing a GNR and a regular array of ferromagnetic strips on top of
it. The ferromagnets induce a proximity exchange splitting of
the electronic states in the GNR and create a spin-dependent
superlattice. We have shown that the electric current through
the device can be highly polarized. Thus, the device can operate
as a spin filter. Alternatively, it can be used to obtain the
polarization degree of the source electrons by purely electrical

measurements. Moreover, the two polarized components of
the current manifest nonmonotonic dependencies on the bias
voltage. In particular, for both spins, the current-voltage char-
acteristics present regions with negative differential resistance
for the bias in the range of a few millivolts. The device operates
therefore as a low-voltage Esaki diode for spin-polarized
currents.

An important advantage of the superlattice induced by
ferromagnets is that the exchange interaction is very short-
ranged; its characteristic length scale is on the order of one
monolayer. Unlike the long-range electrostatic gate potentials
which can interfere with each other, setting a practical lower
limit for the interdevice spacing, the exchange-interaction
induced potential profiles are very abrupt. Therefore, het-
erostructures created by ferromagnets allow for very close
packing of circuits and, consequently, considerably higher
device densities.

Finally, we note that in a spintronic device the degree of
freedom that carries information is the polarization of the
current rather than its magnitude. We have shown that the
current polarization is also a nonmonotonic function of the bias
voltage, suggesting that the superlattice can be used as a Esaki
spin diode. This opens a possibility to design a whole new
class of spintronic circuits such as spin oscillators, amplifiers,
and triggers.
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APPENDIX: ROBUSTNESS AGAINST DETAILS
OF THE POTENTIAL PROFILE

To estimate the accuracy of the transmissions 7'y obtained
using the piecewise constant potential of the main text,
we compared them with those calculated using a different
potential profile, where a linear gradient Vsp/(5a + 6b) is
added to the spin-dependent superlattice potential of the
middle panel of Fig. 1. Results obtained with the tight-binding
method are shown in Fig. 5. There are only slight deviations,
which proves that the details of the potential are not important
for our findings and that the piecewise constant potential is a
very good approximation.
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FIG. 5. (Color online) Transmissions 7% for both spins at finite
bias Vsp = 2mV, assuming that the voltage drop occurs at the edges
of the EuO strips (solid) or linearly along the sample (dashed). Here,
we use the tight-binding model, which can be compared with the
Dirac approximation on Fig. 4(b).
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