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Topologically protected states in δ-doped junctions with band inversion
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A topological boundary can be formed at the interface between a trivial and a topological insulator. The
difference in the topological index across the junction leads to robust gapless surface states. Optical studies of
these states are scarce in the literature, the reason being the difficulty in isolating their response from that of
the bulk. In this work, we propose to deposit a δ layer of donor impurities in close proximity to a topological
boundary to help in detecting gapless surface states. As we will show, gapless surface states are robust against this
perturbation and they enhance intraband optical transitions as measured by the oscillator strength. These results
help us to understand the interplay of surface and bulk states in topological insulators.
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I. INTRODUCTION

Topologically protected surface states naturally arise at the
boundary between a topological and a trivial insulator or vac-
uum [1–3]. The robustness of these states stems from discrete
symmetries of the bulk. As a result, topological insulators are
often included in the category of symmetry-protected topolog-
ical phases, as opposed to topologically ordered phases, like
the fractional quantum Hall states. This classification can be
understood in terms of short- and long-range entanglement of
the ground state, respectively [4,5]. Among the vast myriad of
symmetry-protected topological phases that are known to date,
topological crystalline insulators [6] and three-dimensional
topological insulators [1] are particularly relevant. The for-
mer are protected by crystalline symmetries, such as mirror
symmetry, and can be characterized by a topological invariant,
namely, a mirror Chern number [7]. Specific examples with
experimental support of these topological crystalline insulators
are Pb1−xSnxTe [7–9] and Pb1−xSnxSe [10]. These materials
shift from being trivial insulators to topological crystalline
insulators as the Sn fraction, x, is increased. The evolution
from trivial to topological corresponds to a band closure in the
bulk at the L points of the Brillouin zone when a critical value
of x is reached. The bands that undergo band inversion are the
L+

6 and L−
6 bands. Upon increasing x further, the gap reopens.

This is a signature of a topological phase transition.
On the other hand, the aforementioned three-dimensional

topological insulators are protected by somewhat more subtle
symmetries. The first experimental discovery was Bi1−xSbx

in 2008 [11]. However, this material proved to have a rather
complicated surface structure and a comparably small energy
gap. A year later, a family of so-called second-generation
materials [12] was discovered, among which Bi2Se3 stands
out due to its remarkable properties, such as the possibility
to exploit its topological nature at room temperature [1].
Time-reversal and parity-inversion symmetries are responsible
for its topological protection. A two-band approximation
reminiscent of the times of Volkov and Pankratov [13–18]
can be put forward to describe these two kinds of topological
insulators [3,7,19]. A Z2 topological index can be defined by
the sign of the Dirac mass [19], which in this case corresponds

to half the energy gap. A topological boundary that hosts
surface states can be grown by having opposite invariants on
each side of the boundary. The resulting surface states are
Dirac cones living within the fundamental gap. Remarkably,
the Fermi velocity of these cones can be dynamically tuned by
external fields [20–23].

In a number of relevant publications, it has been experimen-
tally and theoretically shown that topological surface states
are sufficiently robust so as to coexist with a two-dimensional
electron gas (2DEG) formed at the surface [24–31]. This 2DEG
results from the conduction band-edge bending due to surface
charge density effects. The bending creates a quantum well
to trap the continuum states. Moreover, due to the potential
gradient, the parabolic bands of the 2DEG split to form a
Rashba-like spectrum [26–28,32]. However, these results rely
on the specific surface charge density distribution, which
cannot be tailored at will. In this work, similar results to the
ones discussed in those references are presented. Nevertheless,
in contrast to previous studies, we propose to evaporate during
growth a sheet of shallow donor (or acceptor) impurities at a
small distance from a band-inverted boundary (δ doping), a
process that is now almost routine in specialized laboratories.
Moreover, under reasonable assumptions, our model turns out
to be an exactly solvable two-band model combined with
the nonlinear Thomas-Fermi (TF) formulation. This, in turn,
allows us to capture the main physics in a simpler way, in
contrast to more involved Poisson-Schrödinger calculations.
Furthermore, our model is valid both for the aforementioned
topological crystalline insulators and three-dimensional topo-
logical insulators, thereby proposing new platforms where
these phenomena could be explored.

Finally, it is worth mentioning that most works to probe the
existence of topological surface states rely on angle-resolved
photoemission spectroscopy [24,29,33,34], scanning tunnel-
ing microscopy [35], electron transport [36], and Shubnikov–
de Haas oscillations [37] (see Ref. [38] for a comprehensive
review). However, there are also some optical studies being
conducted to reveal their unprecedented properties [39–42].
Our work aims to contribute to possible ways of experimental
detection by means of optical studies of intraband optical
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FIG. 1. L+
6 and L−

6 band-edge profile of a band-inverted junction
with aligned and same-sized gaps, located at the XY plane. Z indicates
the growth direction. The magnitude of the gap is 2�. A δ layer of
shallow donor impurities is grown at a distance D from the junction.

transitions, as revealed by the marked differences between the
oscillator strength in the topological and trivial cases.

II. SOLVABLE NONLINEAR THOMAS-FERMI
FORMULATION

The system we study in this work is a topological boundary
which, as discussed in the introduction, will exhibit topo-
logically protected surface states within the gap. For our
calculations, we shall consider same-sized, aligned gaps. This
simplification allows us to capture the main physics while
keeping the algebra simpler [21].

To populate these midgap states, we propose to evaporate
during growth a δ layer of shallow donor impurities at a
distance D from the junction, as depicted in Fig. 1. A V-shaped
potential is generated at the location of the δ layer by the ionized
donor impurities due to partial screening of the Coulomb
potential. Consequently, electron states from the continuum
(i.e., the conduction band) are sucked in by this potential and
energy quantization results from quantum confinement effects
(see Ref. [43] for a review on δ doping of semiconductors). We
will often refer to this potential as the TF well, due to the close
analogy to what happens in a square quantum well.

Electrons released from the δ layer of ionized donor impuri-
ties form a 2DEG in the vicinity of the layer. Electrons interact
with themselves and experience the collective attraction of all
ionized impurities. The resulting electronic structure can be
calculated in the one-electron approximation, using the local-
density functional concept [44]. The exchange-correlation
potential is usually taken in the approximation of Hedin
and Lundqvist [45] and standard self-consistent numerical
methods can be then used [46–49]. However, the nonlinear TF
formulation of the δ doping has been proven to be equivalent to
the self-consistent (Hartree) model in a wide range of doping
densities [50–53]. The advantage of the TF formulation is that
Poisson and Schrödinger equations are effectively decoupled
and their solution is easier.

We calculate the space charge potential V (z) (z denotes
the spatial coordinate along the growth direction) by means
of the TF formulation. The origin of the z coordinate is set at
the middle of the δ layer throughout this section. Neglecting
the contribution of a small positive background of ionized

acceptors for simplicity, the TF equation reads [50,51]

d2V (z)

dz2
= − e2

3π2ε

{
2m∗

h̄2 [EF − V (z)]

}3/2

+ e2

ε
ND(z), (1)

where EF is the Fermi energy, m∗ is the effective mass, and
ε is the dielectric constant. When the donor density profile
ND(z) is assumed to be a δ function, the nonlinear TF equation
can be exactly solved [50]. Thus, we set ND(z) = nS δ(z)
where nS corresponds to the surface density of donors. If
the effective Bohr radius a∗ = 4πεh̄2/e2m∗ and the effective
Rydberg energy Ry∗ = h̄2/2m∗(a∗)2 are taken as the natural
units of distance and energy, the solution to Eq. (1) representing
neutral structures is given by [50]

V (z) − EF = − γ 2

(γ |z|/a∗ + ω)4
Ry∗, (2)

with γ = 2/15π and ω = (γ 3/πn∗
S)1/5. Here n∗

S = nS(a∗)2 is
a dimensionless parameter denoting the number of donors per
unit Bohr area. In neutral structures, the above equation implies
that EF lies at the lower edge of the conduction band, far away
from the δ layer.

As was already noticed by Ioratti [50], the Ben Daniel–Duke
equation for the envelope function [54] with V (z) given by
Eq. (2) admits exact analytical solutions in term of Mathieu
functions [55]. However, the determination of the energy levels
becomes extremely complex. For this reason, we follow a
different route with the aim of seeking a solvable TF model.

The starting point to replace the exact TF potential (2) by an
approximate potential Vapp(z) is the charge neutrality condition

nS =
∫ ∞

−∞

1

3π2

{
2m∗

h̄2 [EF − Vapp(z)]

}3/2

dz. (3)

On one side, Vapp(z) should decay fast enough in the limit
|z| → ∞ to ensure convergence of the integral. On the other
side, close to the origin Vapp(z) ∼ |z|, similarly to the exact
TF potential. These two boundary conditions are met by an
approximate potential of the form

Vapp(z) − EF = − v0 exp

(
− |z|

ηa∗

)
Ry∗, (4a)

where the dimensionless parameters v0 and η are determined
from the charge neutrality condition (3):

η =
(

34π

210n∗
S

)1/5

� 3

4
(n∗

S)−1/5,

v0 = 4πηn∗
S � 3π (n∗

S)4/5. (4b)

Figure 2 shows a comparison of the approximate potential
Vapp(z) with the exact TF potential V (z) for different doping
levels. We will shortly demonstrate that the approximate
potential (4) leads to an exactly solvable two-band model for
narrow-gap semiconductors [56,57].

III. TWO-BAND MODEL

A topological boundary can be described by means of the
following Dirac-like Hamiltonian [3,7,15–19]:

H = vF α · p̂ + 1
2 EG(z) β + Vapp(z), (5)
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FIG. 2. Comparison of the approximate potential Vapp(z) (dashed
lines) with the exact TF potential V (z) (solid lines) for different
doping levels: (a) n∗

S = 0.1, (b) n∗
S = 1.0, and (c) n∗

S = 5.0.

with D = 0 hereafter (see Fig. 1). Here α = (αx, αy, αz) and
β denote the usual 4 × 4 Dirac matrices, αi = σx ⊗ σi and
β = σz ⊗ 12, σi and 1n being the Pauli matrices and n × n

identity matrix, respectively. Moreover, vF is an interband
matrix element having dimensions of velocity and it is assumed
scalar, corresponding to isotropic bands around the L point. In
order to keep the algebra as simple as possible, we restrict
ourselves to the symmetric boundary with same-sized and
aligned gaps, as depicted in Fig. 1. This assumption simplifies
the calculations while keeping the underlying physics [21].
Thus, a single and abrupt interface presents the following
profile for the magnitude of the gap EG(z) = 2� sgn (z),
where sgn (z) = |z|/z is the sign function. Here, the Z axis
is parallel to the growth direction [111].

The Hamiltonian (5) acts upon the envelope function F(r ),
which is a bispinor whose spinor components belong to the L+

6
and L−

6 bands. Translational symmetry in the XY plane implies
conservation of the in-plane momentum. Hence, the envelope
function can be expressed as F(r ) = χ (z) exp(i r⊥ · p⊥/h̄),
where p⊥ is the eigenvalue of the in-plane momentum operator
p̂⊥. It is understood that the subscript ⊥ in a vector indicates
that its z component is zero. It is convenient to introduce
the unit of length d = h̄vF /� and the dimensionless magni-
tudes ξ = z/d, ε = E/�, v(ξ ) = Vapp(z)/�, and k = p⊥d/h̄.

Since |χ (z)|2 has units of inverse of length, it is also useful to
define its dimensionless counterpart as ϕ = √

d χ . From the
Hamiltonian (5) we get

[−iαz∂ξ + α⊥ · k + β sgn (ξ ) + v(ξ ) − ε]ϕ(ξ ) = 0, (6a)

where now the dimensionless approximate potential can be
cast for convenience in the form

v(ξ ) = − g

2a
exp

(
−|ξ |

a

)
. (6b)

Here a = ηa∗/d and g = 2av0Ry∗/�, where η and v0 are
given in Eq. (4b). It is worth mentioning that the same Eq. (6)
holds for a δ-doped layer without band inversion after the
substitution sgn (ξ ) → 1. In this case, a closed solution at
k = 0 has been reported in Refs. [56,57]. Following the same
procedure described therein, we are able to solve Eq. (6a) in
closed form. The transcendent equation for the energy levels
in the presence (ν = −1) or absence (ν = 1) of band inversion
is found to be

(λ cos φ − ε sin φ)2 = 1 − ν

2
, (7a)

where λ2 = 1 + k2 − ε2 and φ is given in terms of Kummer
functions [55] as

φ = g − 2 × arg[M (λa + iεa, 1 + 2λa, ig)]. (7b)

This equation allows us to obtain the dispersion relation
E(k) in normal and band-inverted systems. The corresponding
envelope functions have to be defined piecewise. We define

δν = μ − μ∗

μ − νμ∗ , (8)

with μ = (ε + iλ) exp(−iφ), and introduce the following
auxiliary functions:

h(ξ ) = exp
(
−λξ − i

g

2
e−ξ/a

)
×M (λa + iεa, 1 + 2λa, ige−ξ/a ),

(9)
p(ξ ) = eiφ/2�(ξ ) + e−iφ/2�(−ξ ),

q(ξ ) = �(ξ )h(ξ ) + �(−ξ )h∗(−ξ ),

where �(z) is the Heaviside step function. Then, introducing
the following two vectors,

u(ξ ) = N p(ξ )

(
1

−δνkeiθ

)
,

v(ξ ) = N
ε − iλ sgn (ξ )

k2 + 1
p(ξ )

(
k2δν − ρ(ξ )

[1 + ρ(ξ )δν]keiθ

)
, (10)

the envelope functions are given by

ϕ(ξ ) = 1√
2

(
σz −σz

12 12

)(
q(ξ ) u(ξ )
q∗(ξ ) v(ξ )

)
. (11)

Here, k = |k|, θ = arctan(ky/kx ), ρ(ξ ) = 1 if there is no
inversion and ρ(ξ ) = sgn (ξ ) if there is. N is the normalization
constant, which can be obtained from

N =
[

4(1 + k2|δν |2)
∫ ∞

0
dξ |h(ξ )|2

]−1/2

. (12)
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FIG. 3. Energy levels as a function of the number of donor
impurities per unit area at k = 0. Solid (dashed) lines correspond
to band-inverted (normal) system. EF /� = 1 in this plot.

IV. RESULTS

We will consider typical values of the parameters in IV–VI
compounds throughout this section. Half of the energy gap
is about � = 75 meV, effective mass m∗ = 0.05m0 (m0 is
the free electron mass), relative dielectric constant εr = 15,
d = h̄vF /� = 4.5 nm, and a∗ = 15.9 nm [14,58]. For the
three-dimensional topological insulator Bi2Se3, the parame-
ters to use would be � = 80 meV, m∗ = 0.12m0, εr = 29,
d = 2.8 nm, and a∗ = 12.8 nm [59]. Finally, for Bi2Te3 the
parameters would be � = 75 meV, m∗ = 0.06m0, εr = 50,
d = 4.1 nm, and a∗ = 44.2 nm [59].

Our first results are concerned with the evolution of the
energy states as a function of doping, nS, for k = 0, as shown
in Fig. 3. As we already discussed in the introduction, the TF
well brings states from the continuum into the gap, similarly to
what is observed in Ref. [60] with more elaborate calculations.
The TF well localizes the states along the growth direction,
although they are extended in the XY plane (they are plane
waves). However, when inversion is present, there is already a
Dirac state within the energy gap, which prevents continuum
states from being hooked by the TF well until the latter is
sufficiently strong, that is, until nS is high enough. As a result,
continuum states in the inverted case will enter the gap later
than they do in the noninverted case. In fact, the entering of
continuum states of the noninverted system alternate with those
from the inverted one, as displayed in Fig. 3.

The next key result comes from studying the dispersion
relation, E(k). Isotropy in the XY plane translates into isotropy
in the dispersion relation as well, so we choose an arbitrary
direction in k space passing through k = 0. This generic
direction is denoted by k in the horizontal axis of Fig. 4.
As we can see, massive relativistic dispersion relations are
obtained when there is no inversion (see left panel of Fig. 4).
In contrast, when inversion is present, there is a Dirac cone
within the gap even in presence of the TF well, an indication

FIG. 4. Dispersion relation for (a) normal and (b) band-inverted
system at nS = 5 × 1011 cm−2. EF /� = 1 in the plots.

of the topological robustness of the cone (see right panel of
Fig. 4). The slope, however, is slightly reduced as compared
to the topological boundary without the δ layer, resembling
the result found in biased junctions [20–23]. On the other
hand, relativistic massive dispersions entering the gap display
a Rashba-like splitting, that is, a horizontal shift of the curves.
Although we will not present it here, the splitting can be
shown to be a combined result of a potential gradient due
to band bending [26] and mirror-symmetry breaking about
z = 0, that is, due to the presence of an asymmetric boundary,
be it topological or not. We have checked numerically that
the dispersion curves also split if the energy gaps have the
same sign, but their magnitude is different on each side of the
boundary.

One can easily see the localization properties of the enve-
lope function that we discussed at the beginning of this section
by looking at the probability density along the growth direction.
This is shown in Fig. 5. If we focus on the more conventional
case where there is no inversion (left panel), we can see how
the TF well leads to the kind of density profiles that one
would expect in an ordinary quantum well, like the bell-shape
density profile corresponding to the lowest energy state. More
importantly, however, the topological boundary leading to the
exponentially localized Dirac state (right panel) dramatically
alters the probability density profile of the continuum states
entering the gap. For instance, the topological surface state
disallows the first TF well state to be bell-shaped, in contrast
to the trivial insulating case. In fact, the hitherto smooth profiles
of the TF well now display sharp peaks right at the topological
boundary.

Finally, as we explained in the introduction, optical exper-
iments to detach the response of topological surface states
from that of the bulk are said to be difficult to conduct.
However, we will now show that a relevant parameter in optical
transitions, the oscillator strength, is completely altered when
the topological junction is present in contrast to the trivial case.
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FIG. 5. Probability density of the lowest states at k = 0 and nS =
5 × 1011 cm−2 for (a) normal and (b) band-inverted system. Baselines
indicate the energy of the state. EF /� = 1 in the plots.

If we denote the initial state by i and the final state by j , we
can write the oscillator strength as follows [61,62]:

fji = 2m∗(Ej − Ei )

h̄2 |〈j |z|i〉|2, (13)

where m∗ is the effective mass. Using the relation � = m∗v2
F

[14], the oscillator strength can also be written in terms of the
dimensionless variables that we defined earlier in the text as
follows: fji = 2(εj − εi )|〈j |ξ |i〉|2.

In Fig. 6, we compare the value of the oscillator strength for
the transition from the first state of the TF well to the second
state at k = 0 as a function of nS, both for the trivial and the
topological cases. Manifestly, the topological boundary has a
clear influence on the oscillator strength and, in turn, on the
optical response of the system. In the trivial system, the oscil-
lator strength reaches its maximum at nS = 5 × 1011 cm−2 for
the chosen parameters and decreases upon further increase of
the doping level. On the contrary, in the topological case, the
oscillator strength increases with the doping level in the whole
range considered in this work. Most importantly, the oscillator
strength is significantly larger in the topological system, up to
a 20% as compared to the normal system. Consequently, the
intraband optical transitions between the ground and the first
excited state of the TF well are enhanced. Hence, we conclude
that optical studies can be carried out in order to efficiently
disentangle the response of the surface state from that of the
bulk.

V. CONCLUSION

Topological insulators are envisaged to have an ever-
increasing number of applications. However, a more complete

FIG. 6. Oscillator strength for optical transitions between the two
first states of the TF well for normal (blue line) and inverted (red line)
systems as a function of the doping level. The upper left inset displays
the ratio of the oscillator strength of the inverted and normal systems.

understanding of the properties of these materials is in order
to better exploit these applications. In this work, we seek to
unravel some of these fundamental properties. We demonstrate
the robustness of the Dirac state against a large perturbation
right at the topological boundary, namely, a δ layer of ionized
donor impurities. In fact, these topological states coexist with
a 2DEG, which exhibits a Rashba-like dispersion due to the in-
terplay between mirror-symmetry breaking about the interface
plane and the potential gradient due to the band bending. These
features have been experimentally and theoretically discussed
in the context of charge density effects at the surface of the
materials, relegating the effect to one that is far from being
tunable. Our proposal is simpler to implement and our model
shows that also topological crystalline insulators could show
a similar behavior. Finally, we show how the linear optical
response is markedly reshaped by the presence of the Dirac
state. It is our belief that experiments will be able to unfold the
optical properties of topological surface states by following the
procedure described in this article.
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