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We study the exciton states in a parabolic quantum wire. An exactly solvable model is introduced for

calculating the exciton state and the binding energy as a function of the radius of the quantum wire

within the envelope-function approximation. In the calculation, we replace the actual Coulomb

interaction between the electron and the hole by a Gaussian nonlocal separable potential and obtain

closed expressions for both the envelope-function and the binding energy. Results are compared with

those obtained by perturbative methods.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Advances in nanometer-size semiconductor techniques have
made possible to fabricate low-dimensional devices, like quantum
wells and quantum wires (QWs), with high crystalline quality.
Due to the high crystal quality, interface roughness is often
negligible and electrons and holes are free to move along the wire
direction. Therefore, Coulomb interaction between them plays
a crucial role for an electron and a hole to stay close to each other
to form a Wannier exciton [1–4]. The interplay of Coulomb inter-
action and the lateral confinement has attracted much attention
due to remarkable properties of the exciton transitions in QWs. In
particular, it has been found an enhancement of the optical gain
and low threshold current in QW lasers having exciton transitions
as compared to those having free-carrier transitions [5,6].

There are several theoretical works on the calculation of the
binding energy of electrons and holes due to Coulomb interaction
in QWs [1–6]. The binding energy is usually computed within the
framework of the envelope-function approximation [7–9]. This
approach holds when the diameter of the QW is much larger than
the spacing of the crystal lattice, which is not a serious restriction
in QWs available nowadays. Neglecting the coupling to far bands
and many body effects, the exciton envelope-function in wide gap
semiconductors obeys a Schrödinger equation. Since no analytical
ll rights reserved.
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solutions are available in many geometries of interest, the exciton
envelope-function and the binding energy are often obtained by
means of variational or numerical techniques.

The nonlocal separable potential (NLP) method [10–12]
presents an alternative way to obtain accurate solutions of the
Schrödinger equation when exact solutions are not available. To
this end, the actual potential is replaced by a projection operator,
leading to an exactly solvable equation and the energy of the
states can be obtained in a closed form with little computational
effort. More important, it is always possible to find a NLP (or a
sum of them) which reproduces exactly the states in the original
local potential [12]. Consequently, there is no theoretical limita-
tion to the numerical accuracy with which physical results can be
obtained. The NLP method has already been successfully used to
determine the binding energy of confined excitons in two-
dimensional quantum dots in a closed form [13] by replacing
the actual Coulomb potential between the electron and the hole
by a Yamaguchi’s NLP [14], which is nothing but the Coulomb local
potential times the ground state wave function for this local
potential [15].

In this work we consider a single exciton in a parabolic QW and
study the corresponding states within the envelope-function
approach, replacing the Coulomb potential between the electron
and the hole by a suitable NLP. The problem has some
resemblances to the above-mentioned confined excitons in two-
dimensional quantum dots [13]. However, the solution to the
problem of an exciton in a QW is more complex because the
mixing of perpendicular and parallel degrees of freedom and
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the resulting potential for the relative motion of the electron and
the hole cannot be separated. The same shortcoming appears after
replacing the Coulomb potential by the Yamaguchi’s NLP [14].
These difficulties can be overcome by introducing a Gaussian NLP
[16], as shown below.
2. Model Hamiltonian

Consider an electron bound to a hole within the effective-mass
approximation. The exciton is embedded in a parabolic QW along
the Z axis and relative dielectric constant � made of a wide-gap
semiconductor which, for simplicity, will be considered of infinite
length. Within these approximations, the two-particle Hamilto-
nian can be written as

H ¼
X
i¼e;h

p2
i

2mi
þ Viðxi; yiÞ

" #
�

e2

�jre � rhj
, (1)

where the sum index i refers to the electron ðeÞ and the hole ðhÞ
with effective masses me and mh, respectively. The lateral con-
finement potential is written as Viðxi; yiÞ ¼ ð1=2Þmio2ðx2

i þ y2
i Þ,

where o determines the lateral size of the QW.
For the parabolic potential it is convenient to separate the

problem into center of mass and relative coordinates, described by
r ¼ re � rh and R ¼ ðmere þmhrhÞ=M, where the total and reduced
masses are M ¼ me þmh and m ¼ memh=M, respectively. The total
Hamiltonian (1) can be expressed as H ¼HCM þHr with

HCM ¼
P2

2M
þ

1

2
Mo2ðX2

þ Y2
Þ, (2a)

Hr ¼
p2

2m
þ

1

2
mo2r2 �

e2

�r
�H0 �

e2

�r
, (2b)

where q ¼ ðx; yÞ, and P and p are the conjugate momenta of the
coordinates R and r. The center of mass problem (2a) is exactly
solvable since HCM correspond to a two-dimensional harmonic
oscillator plus the kinetic energy of the free motion along the QW.
A similar statement holds for H0 in Eq. (2b). However, the
Coulomb term in Eq. (2b) mixes the parallel and perpendicular
degrees of freedom, and the resulting Schrödinger equation
cannot be exactly solved. The rest of this paper is devoted to find
an accurate solution of the Schrödinger equation obtained from
Eq. (2b).

We have previously shown that Coulomb forces in quantum
dots [13] and molecular systems [15] can be accurately sub-
stituted by a suitable NLP. Consequently, the Schröndinger
equation to obtain the envelope-function jwi from Eq. (2b) is
replaced by

ðH0 þ VNLÞjwi ¼ Ejwi, (3a)

where the NLP is defined by

VNL � �
l‘ 2

2m
jvihvj. (3b)

Here l is the coupling constant and v will be referred to as shape

function hereafter. To proceed, we consider the resolvent of the
Hamiltonian H0 as follows:

jwi ¼ �ðH0 � EÞ�1VNLjwi ¼
l‘ 2

2m

X
m

jmihmj
Em � E

jvihvjwi, (4)

where jmi labels the eigenstates of H0, Em being the correspond-
ing eigenvalues. Projecting onto the ket jvi and assuming that
hvjwia0 we arrive at the following transcendental equation for
the exciton energy:

l‘ 2

2m

X
m

jhmjvij2

Em � E
¼ 1. (5)

This equation is valid for any arbitrary shape function v and
coupling constant l. Usually naive shape functions provide
accurate results [15–17].
3. Free excitons

The coupling constant l is not an adjustable parameter of the
model. This can be understood from the fact that we might obtain
the energy level E0 ¼ �Ry� of the free exciton from Eq. (5) when
the confining potential is switched off ðo! 0Þ. Here Ry� is the
exciton effective Rydberg in three dimensions. The calculation
of the coupling constant l is easily achieved in momentum space
when o ¼ 0. The Hamiltonian of the relative particle reads in this
case Hr ¼ k2‘ 2=2mþ VNL and therefore H0 ¼ k2‘ 2=2m. The
eigenstates of H0 are plane waves hrjki ¼ ð2pÞ�3=2 expðik � rÞwith
energy Ek ¼ ‘ 2k2=2m. Thus, the energy spectrum is continuous
and the summation appearing in Eq. (5) is replaced by integration
in the momentum space. Defining k2

0 ¼ 2mjE0j=‘
2, we get

1

l
¼

Z
d3k
jhkjvij2

k2
þ k2

0

. (6)

It becomes apparent that the coupling constant can be calcu-
lated from the Fourier transform of the shape function hkjvi.
Hereafter, we will consider the following Gaussian shape
function vðrÞ ¼ ð1=

ffiffiffiffi
p
p

aÞ3 expð�r2=a2Þ [16]. Taking into account
that hkjvi ¼ expð�k2a2=4Þ and performing the integration in
Eq. (6) we arrive at

l ¼ 2p2a

ffiffiffiffi
p
2

r
�
p
2

ffiffiffi
a
p

ea=2erfcð
ffiffiffiffiffiffiffiffiffi
a=2

p
Þ

� ��1

, (7)

where erfcðzÞ is the complementary error function [18]. For
brevity we have defined a ¼ ða=a�Þ2, where a� is the effective
Bohr radius of the exciton in three dimensions.
4. Excitons in a quantum wire

After having discussed the main features of the NLP, we now
turn to its application to excitons in QWs ðoa0Þ. In this case the
normalized eigenfunctions of H0 in Eq. (2b) can be factorized in
cylindrical coordinates as follows:

jn‘kz
ðrÞ ¼ Rn‘ðrÞ

ei‘yffiffiffiffiffiffi
2p
p

eikzzffiffiffiffiffiffi
2p
p , (8a)

with quantum numbers ‘ ¼ 0;�1;�2; . . . ;n ¼ 0;1;2; . . . and kz.
The axial function corresponding to a two-dimensional harmonic
oscillator is given by (see e.g. Ref. [19])

Rn‘ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþ j‘jÞ!

s
rj‘j

Lj‘jþ1
e�r

2=2L2

Lj‘jn ðr
2=L2

Þ, (8b)

where L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ =mo

p
is the QW radius for the exciton and Lj‘jn

denotes the generalized Laguerre polynomial [18]. The corre-
sponding eigenenergies of the two-dimensional oscillator are
En‘ ¼ ‘oð2nþ j‘j þ 1Þ. Consequently, the total energy of eigen-
state (8) is En‘kz

¼ En‘ þ k2
z‘

2=2m.
To proceed we calculate hjn‘kz

jvi and use Eq. (5), where the
sum runs over the three quantum numbers n, ‘ and kz. Due to
axial symmetry of the shape function, hjn‘kz

jvi is nonvanishing
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Fig. 1. Binding energy as a function of the QW width for light- and heavy-hole

excitons (upper and lower solid lines, respectively). The binding energy of free

excitons ðEB ¼ Ry�Þ is indicated by dashed lines. Perturbative results are plotted as

dotted lines for comparison.
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only if ‘ ¼ 0. From Eq. (8) we get

hjn‘kz
jvi ¼

2Lg2ffiffiffi
2
p

pa2ð1þ g2Þ

1� g2

1þ g2

� �n

exp �
k2

z a2

4

 !
d‘0, (9)

where g � a=
ffiffiffi
2
p

L.
After some lengthy but straightforward algebra, inserting

Eq. (9) in Eq. (5) gives the following transcendental equation for
the exciton energy:

1 ¼
lg

2pað1þ g2Þ
2

X1
n¼0

1

xn

1� g2

1þ g2

� �2n

erfcð
ffiffiffi
2
p

gxnÞ expð2g2x2
nÞ, (10)

where the coupling constant l is given by (7). For brevity we have
defined xn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1� E=‘o

p
.

As an illustrative example of the NLP approach, we consider
light- and heavy-hole excitons in a QW of width L based on
In0:06Ga0:94N. The effective masses of electrons, light-holes and
heavy-holes are 0:19m0, 0:17m0 and 0:78m0, respectively, in units
of the free electron mass m0. The relative dielectric constant
is � ¼ 10:24. Consequently, the effective Bohr radii for light- and
heavy-hole excitons are a�l ¼ 6:04 nm and a�h ¼ 3:54 nm. The
effective Rydberg is Ry�l ¼ 11:6 meV and Ry�h ¼ 19:8 for light-
and heavy-hole excitons, respectively. We then obtain the energy
level E of the exciton inside the QW by solving Eq. (10) as a
function of the QW width L. In the absence of Coulomb
interaction, the energy of the ground state of the electron and
the hole is that of two independent harmonic oscillators in two
dimensions, namely 2‘o. When the Coulomb interaction is taken
into account, the energy of the ground state is ‘oþ E, the first
term arising from the center of mass motion [see Eq. (2a)]. The
binding energy EB is defined as the energy difference between
the ground state energy of these two situations and therefore
EB ¼ ‘o� E. Fig. 1 shows the binding energy as a function of the
QW width. We have taken a ¼ ða=a�Þ2 ¼ 0:01 in Eq. (7) to perform
the calculation, although we have checked that the results remain
almost unchanged when a ¼ 0:005. The binding energy
approaches the effective Rydberg ðEB ! Ry�Þ in wide QWs
ðLba�Þ, as expected. By decreasing the QW radius the binding
energy increases due to confinement effects. This behavior can be
understood as follows. Both ‘o and E, obtained after solving
Eq. (10), increases upon reducing the QW radius because the wave
function is pushed toward the center of the QW. However, the
shift of the energy E of the relative particle is smaller since the
corresponding wave function is already more localized around
the center of the QW due to the presence of the Coulomb term in
Eq. (2b). As a consequence, the difference ‘o� E ¼ EB increases,
as observed in Fig. 1.

For comparison, we have also performed a first-order pertur-
bative calculation, assuming that the confining potential is weaker
than the Coulomb interaction. This approach holds when a�5L,
namely in the weak confinement regime. The unperturbed
envelope-function is written as w0ðrÞ ¼ ð1=

ffiffiffiffiffiffiffiffiffiffi
pa�3
p

Þ expð�r=a�Þ

and the energy shift due to the parabolic confining potential is
DE � hw0jð1=2Þmo2r2jw0i ¼ mo2a�2. Perturbative results are com-
pared to those obtained by the NLP approach in Fig. 1. Remarkably,
the perturbative calculation provides a reasonable value of the
binding energy in the range L\3a�.
5. Conclusions

In this paper we have considered exciton states in parabolic
QWs made of wide gap semiconductor within the framework
of the effective-mass approximation. We introduced a solvable
model that allows us to obtain the binding energy in a closed form
with little computational effort. Our procedure is based on the
NLP approach, in which the Coulomb potential between the
electron and the hole is replaced by a nonlocal separable potential.
It is important to realize that this technique can be made exact,
and so there are no theoretical limitations on this approach. In
addition, the solution can be found for any arbitrary NLP, as we
actually demonstrated [see Eqs. (5) and (6)]. As our selection for a
suitable NLP that allows for a closed solution, we have used a
Gaussian shape function [10]. Once the solution is obtained, we
have compared our predictions to the results obtained by a
perturbative approach, and found that the latter gives a reason-
able value of the binding energy in the range L\3a�.
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[19] D. Chruściński, Ann. Phys. 321 (2006) 840.


	Modeling of Coulomb interaction in parabolic quantum wires
	Introduction
	Model Hamiltonian
	Free excitons
	Excitons in a quantum wire
	Conclusions
	Acknowledgments
	References




