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A B S T R A C T

Topological phases of matter are often characterized by interface states, which were already known to occur at
the boundary of a band-inverted junction in semiconductor heterostructures. In IV-VI compounds such
interface states are properly described by a two-band model, predicting the appearance of a Dirac cone in single
junctions. We study the quantum-confined Stark effect of interface states due to an electric field perpendicular
to a band-inverted junction. We find a closed expression to obtain the interface dispersion relation at any field
strength and show that the Dirac cone widens under an applied bias. Thus, the Fermi velocity can be
substantially lowered even at moderate fields, paving the way for tunable band-engineered devices based on
band-inverted junctions.

1. Introduction

The advent of topology in condensed matter physics has drawn
renewed attention to band-inverted semiconductors. These systems
were first reported by Dimmock et al. in 1966 [1]. They showed that the
fundamental gap between the bands with symmetries L6

− (conduction
band) and L6

+ (valence band) in Pb x1− Snx Te decreases monotonically
upon increasing the Sn fraction and then reopens with the order of the
bands inverted relative to those of PbTe. Nowadays, ternary com-
pounds Pb x1− Snx Te and Pb x1− Snx Se are known to be topological
crystalline insulators [2–4].

Heterojunctions between semiconductors with mutually inverted
bands support interface states lying within the gap, provided that the
two gaps overlap (see Refs. [5–9] and references therein). These
interface states are protected by symmetry and are responsible for
the conducting properties of the surface. From a theoretical perspec-
tive, interface states in IV-VI heterojunctions are well described by a
two-band model using the effective k p· approximation [10]. The
equation governing the conduction- and valence-band envelope func-
tions reduces to a Dirac-like equation after neglecting far-band
corrections. In view of the analogy with relativistic quantum me-
chanics, exact solutions are readily obtained using supersymmetric [8]
or Green's function approaches [11]. A salient feature of interface
states is that the interface dispersion is a Dirac cone of the form

k kE v( ) = | |F⊥ ⊥ , k⊥ being the interface wave vector. Typically, Fermi's
velocity vF is of the order of c10−3 in IV-VI compounds, where c is the
speed of light in vacuum. The precise value of vF depends on the
effective mass and the magnitude of the gap. In a IV-VI heterojunction

both quantities vary along the growth direction but vF remains
essentially constant [7].

Device applications demand systems for engineering vF and
traditionally graphene has been viewed as an ideal candidate to
achieve this goal [12]. Reduction of vF has been predicted and
observed in few-layer graphene due to the rotation of two neighbor-
ing layers [13,14]. Graphene/chlorophyll-a nanohybrids have been
put forward as a way towards tuning vF [15]. This hybrid system
shows increased electron density and reduced vF due the appearance
of a Van Hove singularity. Moreover, many-body effects can also
alter Fermi's velocity. In this regard, a renormalization of vF in
suspended graphene has been related to many-body effects [16].
This renormalization has also been detected in a topological in-
sulator, namely, Bi2Te3 [17]. Unfortunately, all these mechanisms
cannot be dynamically altered in an experiment. In other words,
once the sample is grown, there is no way to tune vF without
modifying the structure.

Recently, we have studied band-inverted junctions based on IV-VI
compounds using a two-band model when an electric field is applied
along the growth direction [18]. Assuming symmetric and same-sized
gaps, we have demonstrated that the Dirac cone arising in the junction
is robust against moderate values of the electric field but becomes
wider on increasing the bias. Fermi's velocity was found to decrease
quadratically with the applied field. This reduction allows Fermi's
velocity to be tuned dynamically and continuously in a controllable way
in the same sample. The aim of this paper is to theoretically address the
quantum-confined Stark effect in arbitrary-sized but abrupt band-
inverted junctions under an electric field of any strength. Results are
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compared to the analytical predictions of Ref. [18] that are only valid
for moderate fields.

2. Interface states in a band-inverted junction

Our analysis is based on the effective-mass approximation, which is
a reliable method to obtain the electron states near the band edges of
IV-VI semiconductors [10]. The electron wave function is written as a
sum of products of band-edge Bloch functions with slowly varying
envelope functions. Keeping only the two nearby L bands, there are
four envelope functions (including spin) that can be arranged as a four-
component vector χ r( ). This vector is composed by the two-component
spinors χ r( )+ and χ r( )− belonging to the L+ and L− bands and subject to
an effective Hamiltonian of Dirac form [6–8]

α pv v α p E z β V z= · + + 1
2

( ) + ( ),z z z0 ⊥ ⊥ ⊥ G C (1)

where the Z axis is parallel to the growth direction [111]. It is
understood that the subscript ⊥ of a vector indicates the nullification
of its z-component. Here E z( )G stands for the position-dependent gap
and V z( )C gives the position of the gap center. α α α α= ( , , )x y z and β
denote the usual 4×4 Dirac matrices
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σi being the Pauli matrices, and n and n are the n×n identity and null
matrices, respectively. Here v⊥ and vz are interband matrix elements
having dimensions of velocity. We take abrupt profiles for both the
magnitude of the gap and the gap center as follows

E z Θ z Δ Θ z
V z V Θ z V Θ z

( ) = 2Δ (− ) + 2 ( )
( ) = (− ) + ( )

G L R

C L R (3)

where Θ z( ) is the Heaviside step function. The subscripts L and R refer
to the left and right sides of the junction, respectively. Note that in the
case of a band-inverted junction Δ Δ < 0L R .

The interface momentum is conserved and we seek solutions of the
form χ r r kz iΨ( ) = ( )exp( · )⊥ ⊥ . The envelope function decays exponen-
tially with distance at each side as kz K zΨ( ) ∼ exp[− ( )| |]L,R ⊥ , where [11]
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and the interface dispersion relation is a Dirac cone

k kE V v( ) = ± | |,F±
0

⊥ 0 ⊥ (5a)

as long as the gaps overlap, i.e., Δ Δ V V( − ) > ( − )R L
2

R L
2. The super-

script 0 refers to the field-free junction. The Dirac point is at V0,
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Δ Δ

= Δ − Δ
−

,0
R L L R

R L (5b)

and Fermi's velocity is given by
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3. Band-inverted junction under bias

We now turn to the interface states in a band-inverted junction
subject to an electric field F applied along the growth direction. The
envelope functions satisfy a Dirac-like equation

χ reFz E( − − ) ( ) = 00 . The interface momentum is conserved so that
χ r r kz iΨ( ) = ( )exp( · )⊥ ⊥ still applies. In order to make the presentation of
results clearer, we parameterize the gap and gap-center profiles (3) as
E z Δ z Δ λ z( )/2 = ( ) = + sgn( )G and V z V γΔ z( ) = + ( )C 0 , where
Δ Δ Δ= ( + )/2R L , λ Δ Δ= ( − )/2R L and γ V V λ= ( − )/2R L . Let us introduce
the length scale of the problem, d v λ= /z , as well as the following

dimensionless parameters

κξ z
d

v
v

d δ Δ
λ

E V
λ

f F
F

k= , = , = ϵ = − , = ,
z

⊥
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0

C (6)

where F λ ed= /C . Then, Dirac's equation can be written as

α κiα βδ β γ ξ γδ fξ ξΨ{− ∂ + · + + [ + ]sgn( ) − ϵ + − } ( ) = 0.z ξ ⊥ (7)

with ξ∂ = d/dξ . We proceed by assuming that the junction is embedded
in a very large box of length L2 . Imposing the current density to vanish
at the edges of the box we get iβα Ψ Ψ(−ℓ) = (−ℓ)z and

iβα Ψ Ψ− (ℓ) = (ℓ)z [19], where L dℓ = / ≫ 1. Moreover, continuity at
the interface amounts to Ψ Ψ(0 ) = (0 )− + .

We perform a unitary transformation ξ ξΨ Φ( ) = ( ) with
σ σ= (1/ 2 )( + ) ⊗x z 2 that transforms Dirac's equation (7) into

σ γ ξ γδ fξ δ ξ σ Φ{ ⊗ + sgn( ) − ϵ + − + [ + sgn( )] ⊗ } = 0,z x 2 (8)

where i σ k σ k σ= − ∂ + +ξ z x x y y is nothing but a Dirac Hamiltonian for
massless particles. In order to tackle the problem it is convenient to
write Φ Φ Φ= ( , )u l

T . Doing so, a pair of coupled equations are obtained,
which are easily decoupled, resulting in the following equation for the
upper component Φu

κ ifσ γ ξ γδ fξ δ ξ Φ{∂ − − + [ sgn( ) − ϵ + − ] − [ + sgn( )] } = 0,ξ z u
2 2 2 2

(9a)

with ξ ≠ 0 and κκ = | |. Φl is then obtained from

δ ξ
γ ξ γδ fξΦ Φ= − 1

+ sgn( )
[ + sgn( ) − ϵ + − ] .l u

(9b)

Notice that Eq. (9a) is now diagonal and straightforwardly solved. In
fact, one may solve for the upper component of Φu and obtain the lower
component by taking the complex conjugate of the former and different
constants of integration. Let

x
f

γδ fξ γ ξ μ
f

κ δ ξ= 1 [ϵ− + − sgn( )], = 1
4

{ + [ + sgn( )] }.2 2 2

(10)

Then, it can be immediately shown that

M σ MΦ C= ( *) ,u x (11a)

where C is a four-component constant vector and M(x) is given by
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and [20]
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with M a b z( , , ) the Kummer's functions [21]. The functions F(x) and
G(x) satisfy the following useful relations

i x F x G x
i x G x F x

( ∂ + ) *( ) = 2μ *( ),
( ∂ + ) ( ) = 2μ ( ).

x

x (12)

Using these relations and equations (9b) and equations (11a) we obtain

τM σ ησ M τσ Mσ η MΦ C= ( * + + * *) ,l x x x x (13a)

where we have introduced

τ
μ f

δ ξ
η

κ iκ
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=
2
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Finally, Φ can be finally expressed as

⎛
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Once the general solution at each side of the junction is known,
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boundary conditions at the interface and ξ = ± ℓ lead to
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4. Numerical results

To avoid the profusion of free parameters, in this section we restrict
ourselves to band-inverted junctions with centered gaps (γ = 0). Let us
start out by calculating the first-order perturbation correction to the
field-free dispersion relation (5a). Straightforward algebra yields that
to first order in κ| | and considering δ| |⪡1

κ κ fδϵ( ) = ϵ ( ) + ,±
0 (17)

where κ κϵ ( ) = ± | |±
0 is the field-free energy, which reduces to equation

(5a) when restoring to the original parameters. Therefore, the first-
order perturbation approach predicts that the Dirac point shifts
upwards or downwards with f, depending on the sign of the parameter
δ, but Fermi's velocity remaining unaltered. However, that is not the
case when numerically solving (16). We found that better numerical
accuracy is attained by setting a field-dependent origin of energy,
namely after replacing κϵ( ) by κ fδϵ( ) − in (16). While the energy shift
of the Dirac point is correctly accounted for by perturbation theory, i.e.

fδϵ(0) − = 0, the numerical solution of Eq. (16) reveals that the Dirac
cone persists but its slope (Fermi's velocity) is lowered at finite values
of the reduced electric field f. Lowering of Fermi's velocity is clearly
seen in Fig. 1(a), where we compare the interface dispersion relation at
f F F= / = 0.25C with the unbiased junction when the difference in the
gap sizes is 20% (Δ Δ= −1.2R L).

In the case of symmetric gaps (Δ Δ= −R L), we were able to obtain an
approximate dependence of Fermi's velocity on the electric field, given
as

⎛
⎝⎜

⎞
⎠⎟v F v F

F
( ) = (0) 1 − 5

8
,F F

2

C
2

(18)

and found that it fits the numerically exact results with outstanding
precision even at moderate fields F F≲ 0.4 C [18]. Fig. 1(b) compares the
approximate dependence of Fermi's velocity on the electric field from
(18) with the numerical result from (16) when Δ Δ= −R L, confirming
the correctness of the former. In the general case of an asymmetric gap
we have been unable to arrive at a closed expression similar to (18).
Fig. 1(b) also shows the dependence of Fermi's velocity on the electric

field when Δ Δ= −1.2R L. We can clearly see a stronger reduction of
Fermi's velocity compared to the symmetric gap configuration. In fact,
even at moderate fields, the dependence is not quadratic on F but of the
form F4 (see dashed line).

5. Conclusions

In conclusion, we have studied band-inverted junctions under a
perpendicular electric field. We used a spinful two-band model that is
equivalent to the Dirac model for relativistic electrons. The mass term
is half the bandgap and changes its sign across the junction. In view of
the analogy with relativistic electrons, we have solved exactly the
corresponding Dirac equation that describes the confined Stark effect
of the interface states. It is a remarkable result that the interface linear
dispersion is preserved and the Fermi velocity is lowered by the electric
field. The symmetric gap configuration Δ Δ= −R L was already discussed
in our previous work [18], where it was demonstrated the lowering of
Fermi's velocity is quadratic in the electric field. Remarkably, in this
work we found a more dramatic decrease of Fermi's velocity in the
general case of asymmetric gaps (Δ Δ≠ −R L). In the range of electric
fields discussed in this work, Fermi's velocity decreases as the quartic
power of the field and the effect is magnified. The reduction of Fermi's
velocity is an effect with measurable consequences on several physical
magnitudes, and we expect it to have applications for the design of
novel devices based on topological materials.
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