Relativistic and nonrelativistic Kronig-Penney models
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The wavefunction and the Kronig—Penney dispersion relation of an electron moving in a one-
dimensional periodic array of delta potentials are found, in the relativistic as well as in the
nonrelativistic case. The Green’s function method and Bloch's theorem are used in a simple form.

I. INTRODUCTION periodic potential, namely, Bloch functions and the occur-

rence of energy bands. This model assumes a single elec-

The Kronig-Penney model' has been widely used to in- tron moving in one-dimensional periodic square well po-
troduce some important concepts of electron dynamicsin a tentials. However, this potential is frequently replaced by a
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one-dimensional periodic array of delta functions, the area
of the barriers and the lattice parameter remaining un-
changed. To obtain the wavefunction and the electron en-
ergy, one must solve the appropriate nonrelativistic Schré-
dinger equation or the relativistic Dirac equation with
suitable boundary conditions. Boundary conditions for the
electron wavefunction in the delta potential do not corre-
spond to any real physical situation®: nonrelativistic wave-
function derivative and relativistic wavefunction are not
continuous.

Tn the present article, we find the wavefunction and the
energy of an electron moving in an infinite one-dimensional
array of delta potentials. In order to solve the problem,
Green’s function method and Bloch’s theorem? are applied
in a simple and pedagogic way. Fairbairn ef a/.* employed
analogous techniques to analyze the relativistic effects on
surface states. The procedure is based on the expansion of
Bloch waves in terms of a complete and orthogonal set of
plane waves, i.e., we take the Fourier transform. This pro-
cedure does not need any previous knowledge of Green’s
function method® and it can be used in both nonrelativistic
and relativistic equations (Secs. II and 111, respectively).
Furthermore, “strange” boundary conditions are avoided;
we only require the periodicity of Bloch functions. In turn,
we need a cumbersome, although straightforward, algebra.
Also, we calculate the relativistic corrections at low ener-
gy, with the aid of the dispersion relation {Sec. IV).

11, NONRELATIVISTIC ELECTRON IN THE
PERIODIC POTENTIAL

Let us suppose a nonrelativistic electron with mass m is
moving under the action of the one-dimensional potential

o

S b(x—nl), (0

n = w0

Vix)=A4

where L is the lattice parameter and A4 is the area of the
barriers. According to Bloch’s theorem, the wavefunction
of such an electron in the periodic potential is expressed as

#(x) = exp(ikx) U(x), (2)
#ik being the crystal momentum. Here, U/(x) 1s periodic
with period L, i.e.,

Ux+nl)=Ux), n=0,+1,+2,. (3)
and satisfies the following equation®;

[ — (#/2m) (3 + ik)? + V(x) 1U(x) = &(k)U(x),

(4)
where @ denotes differentiation with respect to x and €,(k)
is the nonrelativistic electron energy.

We must solve this equation to find the electron energy

€,(k). For this purpose, we expand U/(x) in terms of plane
waves #(I,x) = (2m) ~ ' exp(ifx) so we can write

U(x)=f dl' ¢’ x)a(l’). (5)
Inserting expansion (5) in Eq. (4), multiplying the re-

sult by ¢*(/,x), and integrating over all x values, one ob-
tains

2mA _
a(1)=(%)[a§—(1+k)2] !
X 3 ¢*UnLyUinL), (6)
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where a, = ay(k) = [2me,(k)/#]""*. Thus beginning
with expansion (5), the solution for Eq. (4) is

Ulx) = ( :; ) ﬂj _utal)

Xexplil(x —nL){ad — (I + &))"

Carrying out the integration by contour methods (we
take a, with a small positive imaginary part so the summa-
tion converges) and taking into account the relation
U{nL) = U(0), we have

dl

— =

P L1}
Ux)= —i|l— | U0
() t(aOL) © 2

wexpl —ik(x —nL) +igyx —nL ], (7
with P = mAL /#. Note that the condition givenin Eq. (3)
is fulfilled for this function, i.e., U(x) is periodic with the
same period of the crystal lattice. Therefore, it suffices to

find U/(x) within the unit cell [0,L], so we can choose
0<x<L, Thus Eg. (7) becomes’

U(x) = (P/a,L)U(0)e = * [ sin ax
+ sin ag(L — x)]/{cos kL — cos a,L). (8)

Taking the limit x — 0 we find the well-known Kronig-FPen-
ney dispersion relation

(P /agl)sin ool + cos a,L = cos kL. (9)

Real values of &, (&), obtained by the usual search meth-
ods, give us the electron energy €,(4) and consequently the
band structure of the crystal.

A combination of Egs. (2), (8), and (9) gives the elec-
tron wavefunction

#(x) = 1¥(0) [e™" sin apx + sin o, (L — x)]/sin e L,
(10)

where #(0) is a normalization constant. Solution of the
Schrodinger equation by usual methods® and by T matrix
method® yields the same results.

1II. RELATIVISTIC CASE

In this section, we will solve the one-dimensional Dirac
equation by means of similar techniques to those used in
Sec. I1. Nevertheless, there is a difference with the previous
situation since the relativistic wavefunction has two com-
ponents.'® This difficulty can be easily overcome if the up-
per and the lower compenents are separately expanded as a
combination of plane waves. Besides that, the procedure is
the same as before.

Let us consider the one-dimensional Dirac equation for
an electron moving in a potential F{x) givenin Eq. (1).In
that case, Dirac Hamiltonian is invariant under transla-
tions x —x + nL, so Bloch’s theorem is still valid. Thus the
electron  wavefunction takes the form  ¢(x)

= exp(ékx) U(x), where now the periodic function U(x)
has two components

Ux)y=U(x)W, + U,(x) W,
and satisfies the first-order differential equation
[ —ifico, (3 + ik) + o,mc’ + V(x)U(x)

= E(kYU(x), (1)
o, and o, being the usual 2 2 Pauli matrices and

=) m-().
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We take the Fourier transform of U{x) using these spin-
ors by writing

Ux) :j dl' 3" ) [a (I W, + a1 W], (12)
Inserting Eq. (12) in (11), multiplying the left by

¢*Ux}WT (r=12 and t denotes the Hermitian conju-
gate), and integrating over all x values, we can show that

fic(k + D e () +ay(!) —a, ()]

F (=D mla,(+4 Y Sl WIUO)

=E(k)ar(1)r r= 1:21 (13)
where
) = dx U(x)8(x). (14}

— €

After some algebra, from Eqs. (12) and (13), it follows
that

Ulx} = — iB i gillx = nL| —k(x-nLH{[é‘Ul(O) W,

n— — o

+ & U0 W,] + [U,(0)W, 4+ U, (0)W,]
X[8{x—nLy—6( —x+nL)]} (15)
J

ikl

#(x) = B{cos kL — cos nL)“‘( )
—i[e

Of course, making ¢— o, the upper component coin-
cides with the nonrelativistic wavefunction (10) and the
lower component vanishes.

IV, RELATIVISTIC CORRECTIONS AT LOW
ENERGY

For many cases of interest, relativistic effects on electron
energy are very small. Therefore, it is instructive to seek the
lowest-order corrections to e(k) = E(k) — me®; we will
follow a similar procedure to that given in Ref, 10.

Let 7 be the following dimensionless parameter:

y = e(k}/2mc?

Expanding the relativistic dispersion relation (16) to first
order in ¥ we have

(P/aL)sinal + cos al — cos kL + (y/2)
X [(3P/al —aL)sinal + Pcos al ]
~B?(cos kL + cos aL), (18)

being @ = a(k) = [2me(k)/#] 12 Now we define a new
parameter b by the relation €(X) = €,(k) (1 + by). Carry-
ing this expression to Eq. (18) and keeping only the first-
order terms in ¥ we obtain

b — 1424 /el — [(2+P)A /€L )/

[1 — gl cotagl + 26,L /4 ],
where Eq. (9) has been used. The first-order relativistic

1005 Am. J. Phys., Vol. 55, No. 11, November 1987

Ele*sinpx +singp(L —x)] —i[e*Fcosnx —cos (L —x)]
cos yx —cos g{L — x)] & ~'{e* sin yx + sin (L — x)]

For the sake of simplicity, we have introduced the notation
nhe = (E> —m*c*)'?, E£=(E+ mc*)/(E — me?),

B =4 /2%¢c, and
1, 520
8(s) = {0’ 520’

is the Heaviside step function. We have chosen n with a
small positive imaginary part to ensure the convergence of
the series.

Inserting Eq. (15) in Eq. (14) we can obtain

U(0) = B(cos kL —cos L) ™!
(§ sin 7L sin kL
sinkl. £ 'singL
The consistency of this equation leads to the relationship
[(PE /mc*)sin L 1/nL + (1 —B*)cos L
= (1 + BHcos kL, (16)
which is the relativistic Kronig-Penney dispersion rela-
tion.* Clearly, Eq. (16) reduces to (9) in the nonrelativis-
tic limit.
Because of the periodicity of U(x), we can choose
0 <x <L (we do not include the discontinuity points at

x =0and x = L). Using Eq. (13), the evaluation of the
electron wavefunction is now straightforward’

)U(O).

)ufl(O), O<x<L.
(17)

I
correction ta the band structure is

e(k)zeﬁ(k)[l _@

2me

24
12
€L

(2 4+ P)d /e, L )]
V4 2e,L /4 —ayl cota /]
(19
Relativistic corrections are caused by mass-energy ef-
fects, since there is no spin-orbit interaction in one dimen-
sion.

V.SUMMARY

Relativistic and nonrelativistic Kronig—Penney models
have been solved through Green’s function method and
Bloch’s theorem in a simple way. The electron interaction
with the crystal has been taken as a one-dimensional peri-
odic array of delta potentiais. Electron wavefunction and
dispersion relation are obtained in each case. Finally, first-
order relativistic band structure has been derived.
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