Dirac particles in the potential —1/|x|
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Since the publication of Loudon’s work,' the problem of ~ nal,”™ as well as elsewhere ® ® The particular interest in

a particle moving under the action of the potential — 1/]x| this potential, aside from its relevance in some physical
(the so-called one-dimensional hydrogen atom) has been  applications,’ comes from the fact that several problems
extensively considered in a number of papers in this Jour- have emerged. One of these concerns the nonexistence of
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bound-state solutions for the Dirac equation with the elec-
trostatic-type potential — 1/]x|, while the Schrodinger
and the Klein—-Gordon equations predict binding of parti-
cles for such a potential.* Here, the term electrostatic refers
to the way the potential is added to the free-particle Dirac
Hamiltonian. Moreover, according to the covariance of the
Dirac equation, Lorentz scalar poterttials can also be con-
sidered. To be specific, electrostatic and scalar potentials
mean that the potential is multiplied by the same Dirac
matrix as the energy and the rest mass of the particle, re-
spectively.

A similar problem is found in the one-dimensional Cou-
lomb potential + |x|. If inserted into the Schrodinger
equation, all the resultant states are square-integrable and
hence are bound states; the entire spectrum becomes dis-
crete.'” On the other hand, if added to the Dirac equation
as an electrostatic potential, no bound states can occur at
all''"'""; only resonance states appear and the particle es-
capes to infinity by tunneling from positive to negative en-
ergy states'® (a manifestation of the famous Klein para-
dox). Nevertheless, a linear scalar potential can confine
relativistic particles,'"'" and hence there exist bound
states.

In this note we shall point out that the same effect occurs
in the one-dimensional potential — 1/]x|, i.e., a Lorentz
scalar potential stronger than the electrostatic potential
pravides acceptable solutions for the bound spectrum. This
scalar potential is equivalent to censidering the particle
mass as a function of position, an interesting possibility in
the field of particle physics.'® We also show that the parti-
cle never escapes to infinity, cven if the electrostatic poten-
tial is stronger than the scalar potential so that no bound
states appear; on the contrary, another interesting example
of a particle falling to the origin is found.'”'™

Let us start with the one-dimensional Dirac equation for
an electrostatic potential F(x) plus a Lorentz scalar poten-
tial §(x)
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act on the two-component wavefunction W (x). Now we
consider ¥(x) and $(x) to be the one-dimensional hydro-
gen atom potentials. Since the pole of the potential — 1/]x|
behaves like an impenetrable barrier for the particles, one
can consider the right (x>0} and left (x <0) regions as
independent.** Therefore, we can take V(x) = g f(x) and
S(x) = g, f(x), where the g’s are the coupling constants
and

+o,[m+8x)]—[E— V(x)]]‘l’(x) =0,
(1

—U/x, x>0,
Slx) =
+ w0, x<0O
This choice of the potential function, which has also been
considered by Nieto'” for nonrelativistic particles, leads to
the following first-order coupled equations:

i\lfu(x) = 4 (E—}—m 4 u)%m,
dx X

m + gl‘ +g!

d

X
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for the upper ¥, and lower ¥, components of ¥. Fortu-
nately, Eq. (2) has exactly the same form as the radial
Dirac equation for the spherical Coulomb potential
Firy= —g./randS(r) = — g,/r{compareEq. (2) with
(3.86) of Ref. 20], except that there exist no spin terms in
one dimension. To pass from the three-dimensional to the
one-dimensional equation, we may carry out the symbolic
substitution j— — 1, where j denotes the angular momen-
tum. We should stress that this is only a formal prescrip-
tion without any physical meaning. Therefore, following
the steps of Ref. 20, the (unnormalized) solutions of Eq.
(2) are readily found in terms of confluent hypergeometric
functions

(\I’“ (x)
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q,l(x)) X'e”M(m+ EY'[ + (g.m+ Eg,)

W F( —n,1 4+ 2v;2qx) + (vip — g, E — myg,)
HKEF(l —mt + 2v2yx)], (3)

where the upper (lower) sign refers to the upper (lower)
component. Here, n denotes a positive integer,
v=+ (g2 - g and p=(m® — E?)'?is a real param-
eter for bound states (> |E|). The energy levels are ob-
tained through the quantum condition

(g.E, +me)/(m —EN'"?=n+ (g -2 (4
For the sake of simplicity, we introduce the quantity
c(xX)=¥ + (x} Vx) 4 0,.5(x) J¥(x)

= (g, + &) ¥, (x)]*f(x)

+ (g, — &) |V, () [P0, (5)

so the expectation value of the potential energy is then giv-
en by

J.xc(x)dx
o

This integral should remain finite in order to obtain accep-
table bound-state solutions.

Let us now consider some special cases.

{a) Pure electrostatic potential (g, #0, g, = 0). In this
particular situation v == /|g.| is an imaginary parameter.
The wavefunction presents an essential singularity and os-
cillates rapidly near the origin W(x)~cos(|g./logx
+ const) without reaching any limit, and hence it pos-
sesses a continuous spectrum for all energy values because
nto adequate boundary condition is found at x—0. There-
fore, there exist no bound solutions, no matter how large g,
is.'” Since the particle cannot escape to infinity for |E | < m
| as can be checked from the asymptotic behavior of Eq.
{2)], the particle escapes to the origin and “falls” to the
center: The one-dimensional Dirac hydrogen atom would
be absolutely unstable. Also note from Eq. (4) that the
particle energy develops an imaginary part, which is a gen-
eral feature of problems where collapse to the center oc-
curs. This imaginary part is related to the probability of
pair production by the overcritical electrostatic field.”'
Moreover, in view of Eq. (5), ¢(x) behaves like xe
as x goes down to zero, and consequently the expectation
value of the potential energy becomes infinite. In a similar
fashion, the falling of the particle to the center in the three-
dimensional Coulomb potential may occur, when
Za>j+ L A proper treatment of Dirac particles in over-
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critical electrostatic potentials has been given else-
where.?'

The same conclusions hold for a nonvanishing scalar
coupling constant, whatever |g,| > |g,|: No bound-state so-
lutions can be oblained at all.

(b) Pure scalar potential (g, #0, g, = 0). Now v be-
comes a positive real parameter and hence the wavefunc-
tion behaves correctly near the origin. In addition,
c(x) ~x¥® ' leading to a finite expectation value of the
potential energy. Also, bound states can occur even if g,
has a nonzero value, smaller than g,. Energy levels appear
in pairs; from Eq. (4) we have

E/m=+[1—g/(n+gH]"? (6)

for pasitive g, (attractive scalar potential), while there is
no binding of particles for negative g, (repulsive poten-
tial). The states with positive (negative) energy corre-
spond to particles (antiparticles) reflecting that the scalar
potential binds particles as well as antiparticles.

(c) Equally mixed potential (g, = g, and v = 0).

This particular choice of the coupling constants leads to
a Schridingerlike equation for the ¥, (x), as can be seen
from Eq. (2). Expanding W, (x) in powers of x, from
expression (3), one obtains W, (x) ~x, so that ¢(x) ~x
near the origin. Therefore, the wavefunction is square-inte-
grable and the expectation value of the potential energy
remains finite, so \V represents truly bound states. The en-
ergy levels are given by

E/m=1-2g/(g + n%). (7

For weak coupling we have (F, — m)~ — m(2g,)"/2n,
resembling Balmer’s formula (the factor of 2 in the con-
pling constant is due to the two equal terms of the poten-
tial).

In conclusion, the one-dimensional potential — 1/1x|
can bind Dirac particles only if considered as a Lorentz
scalar potential, while no binding of particles can occur for
electrostatic potentials. This means that, unlike the three-
dimensional electrostatic potential — g, /#, the potential
— g./|x| becomes overcritical®® even if g, is small, and
then the particle “falls™ to the center. Vacuum polariza-
tion, or some other way to regularize the potential near the
origin, should prevent the collapse of the particle into the
center. Finally, we have found that an equal mixture of
both potentials can bind particles.
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