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a b s t r a c t

Recently synthetic homopolymer DNA molecules have been theoretically demonstrated to support oscil-
lating polarons when they are subjected to an external electric field (Bloch oscillations). Environment
effects might introduce randomness in the molecular levels that, in general, destroy the coherence nec-
essary to support this periodic dynamics. In this sense the existence of long-ranged correlations in DNA as
well as its influence on its properties has been widely discussed. We demonstrate that the polaron per-
forms Bloch oscillations even in disordered DNA molecules provided long-range correlations arise in the
sequence of molecular levels. We predict the occurrence of THz alternating currents across the DNA mol-
ecules, opening the possibility of new applications in molecular electronics.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Conducting properties of single DNA molecules have been stud-
ied for some years now due to their potential applications. Recent
experiments suggest that DNA molecules may play an important
role in future nanoelectronics. Thus, depending on the particular
DNA sequence, environment conditions or contacts effects, differ-
ent conducting behaviors have been established for the DNA [1].
The most promising DNA molecules seem to be DNA homopoly-
mers as poly(G)–poly(C), whose semiconducting behavior has been
theoretically and experimentally established [2–18].

However, since DNA is easily deformable, its structural defor-
mations should be taken into account for an accurate description
of its charge transport properties [19]. Charge coupling with such
DNA distortions can create a polaron and enhance its mobility.
This process reminds the multiple-step hopping mechanism also
proposed to explain charge transport in DNA [20–22]. Thus, the
behavior of the incoherent charge hopping can be understood as
polaron diffusion. In this respect a variety of works have been de-
voted to the description of the polaron dynamics in DNA mole-
cules [23–28].

For the particular case of DNA homopolymers subjected to a dc
electric field, it was theoretically proven that, due to the periodicity
of the nucleotide sequence, polarons might behave as electrons in
biased periodic potentials. This means that they perform a periodic
motion, in real and in k space, known as Bloch oscillations (BOs),
whose amplitude and frequency can be established from semiclas-
sical arguments [29,30]. Moreover, such a periodic motion leads to
alternating currents in the THz range [31].
ll rights reserved.
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As we already mentioned, the particular nucleotide sequence as
well as the environment conditions of DNA, which locally modify
the base energy levels, strongly affect the transport properties. In
this sense, it is well established the existence of long-range corre-
lations in the energy landscape of natural DNA sequences [32–38]
and therefore, a study of the polaron dynamics in such DNA mole-
cules is in order. In particular, the energy distribution used in Ref.
[39], which models long-range correlations, presents a number of
interesting properties as reported in several works [39–44]. De-
spite disorder-induced dephasing effects, such correlated distribu-
tions support BOs when correlations are strong enough [42].

In this paper we study the polaron dynamics in DNA presenting
long-range correlations. Contrary to what expected, long-range
correlations in DNA enhance the periodic motion of the polaron
under an applied electric field, leading to ac currents with a well-
defined frequency in the THz range.
2. Model

The Peyrard–Bishop–Holstein (PBH) model maps the double
stranded DNA helix onto a 1D lattice where every node represents
a base pair [45]. A single degree of freedom is assigned to every
site, which describes the stretching of the H-bonds within the
two complementary bases, yn. Notice that the stretch of the base
pairs is the degree of freedom most strongly coupled to the elec-
tron system and therefore, the most capable of carrying polarons
[46,47]. Moreover, due to the different time-scales of the carrier
and the bases dynamics, the Hamiltonian of the PBH model can
be cast within a semiclassical approximation [48]. The carrier is
then treated quantum-mechanically, within the framework of the
tight-binding approximation, while the lattice dynamics is taken
into account classically. Under such considerations the Schrödinger
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equation for the carrier in a biased heterogenous molecule is given
by [49]

i�h
dwn

dt
¼ En � Unwn � Tðwnþ1 þ wn�1Þ þ vynwn; ð1Þ

where wn is the probability amplitude for the charge carrier located
at the nth nucleotide ðn ¼ 1; . . . ;NÞ. The parameter U ¼ eFa is the
potential energy drop across one period of the lattice ða ¼ 3:4 Å in
DNA) due to the applied electric field F. The hopping is restricted
to nearest-neighbor nucleotides and its magnitude is given by �T.
The last term in Eq. (1) is a Holstein-like on-site correction to de-
scribe the carrier–vibration coupling, whose strength is parameter-
ized by v [50]. It should be noted that ab initio estimations of the
coupling constant v are scarce and the results are strongly depen-
dent on the sequence and number of nucleotides [28]. In this work
our calculations were mostly performed with the constant
v ¼ 0:3 eV=Å which agrees with the experimental and theoretical
results given in Refs. [47,51].

Long-range correlations are introduced in the on-site energies
En ¼ �Eþ en as follows [39]

en ¼ rCa

XN=2

k¼1

1

ka=2 cos
2pkn

N
þ /k

� �
; ð2Þ

where Ca ¼
ffiffiffi
2
p PN=2

k¼1k�a
� ��1=2

is a normalization constant and

/1; . . . ;/N=2 are N=2 independent random phases, N assumed to be
even. They are generated using a uniform probability distribution
within the interval ½0;2p�. Hereafter we set �E ¼ 0 without loss of
generality and the standard deviation of the sequence (2),
r ¼ he2

ni
1=2, is referred to as magnitude of disorder. Here h. . .i de-

notes average over realizations of the random phases /n. The
strength of the correlations in the energy sequence is defined by
the exponent a which also describes its power-like spectral density
SðkÞ � 1=ka [39]. When the electron–vibration coupling is neglected
ðv ¼ 0Þ, the steady-state Schrödinger equation arising from (1) sup-
ports a set of extended states at the band center as well as other
interesting properties, provided a > ac � 2 [39–43]. Therefore, we
consider two limiting cases in our study hereafter, the strongly cor-
related case a > ac and the weakly correlated one a < ac .

Newton’s equations of motion for the displacement yn become

m
d2yn

dt2 ¼ �V 0MðynÞ �W 0ðyn; yn�1Þ �W 0ðyn; ynþ1Þ � vjwnj
2
; ð3Þ

where m is the nucleotide mass and the prime indicates differenti-
ation with respect to yn. The Morse potential

VMðynÞ ¼ V0½expð�aynÞ � 1�2 ð4Þ

takes into account the anharmonic interaction between comple-
mentary bases as well as the interaction with the sugar–phosphate
Fig. 1. (a) Modulus of the carrier wave function and (b) lattice d
backbone and the surrounding solvent. The interaction between
nearest-neighbor nucleotides along the stacking direction is de-
scribed by the potential [49]

Wðyn; yn�1Þ ¼
k
4
ð2þ e�bðynþyn�1ÞÞðyn � yn�1Þ

2
: ð5Þ

Both potential terms depend on fitting parameters which were cho-
sen to reproduce experimental DNA melting curves [52]. Hereafter
we will use the following set of optimized parameters: m ¼
300 amu; V0 ¼ 0:04 eV; a ¼ 4:45 Å

�1
; k ¼ 0:04 eV=Å

2
; b ¼ 0:35 Å

�1

and T ¼ 0:1 eV. The chosen value of the parameter V0 is compatible
with poly(A)–poly(T) synthetic DNA [53].

3. Stationary polaron solution

To obtain the initial polaron, we closely follow the procedure gi-
ven in Ref. [50] in an unbiased homogeneous lattice (U ¼ 0 and
r ¼ 0), including a dissipative term of the form �cmdyn=dt in Eq.
(3), with c ¼ 50 THz. We solve the nonlinear Eqs. (1) and (3) using
a Runge–Kutta method of 4th order under rigid boundary condi-
tions, considering the homopolymer DNA case. Gaussian functions
are used as the initial conditions for the lattice distortion and the
carrier wave function. Due to the dissipation in the lattice, the ex-
tra energy of these unphysical initial functions will be removed in
the energy minimization process. After a long enough time we get
the minimal energy conformation of the charge-lattice system,
which is the stationary polaron solution to start our dynamical
study of the biased DNA molecules.

In Fig. 1, the stationary polarons for different values of v in a
system of N ¼ 750 are shown. It is to be noticed that by increasing
the strength of the charge-lattice coupling the localization of the
steady states becomes larger.

4. Motion of the polaron in a biased and disordered DNA
molecule

In this section we calculate the time-evolution of the polaron
obtained in Section 3. We integrate (1) and (3) including disorder
in the site energies of a biased lattice without dissipation. The
numerical integration method as well as the boundary conditions
used in this case are the same that those considered above. Our
interest is to monitor the polaron motion in a biased and disor-
dered DNA molecule in the two already mentioned limiting cases:
strongly correlated (i.e. a ¼ 5) and weakly correlated (i.e. a ¼ 1)
disorder. To this end, the modulus of the carrier wave function
jwnj and the local lattice distortion yn will be displayed by means
of density plots.

Figs. 2 and 3 show the local lattice displacement (left panels)
and the corresponding modulus of the carrier wave function (right
isplacement at t ¼ 0 for different values of v and N ¼ 750.



Fig. 2. (a) Local lattice displacement and (b) modulus of the carrier wave function in a lattice of N ¼ 750 sites as a function of position and time for a single realization of
disorder. The parameters considered are v ¼ 0:3 eV=Å; F ¼ 3:0 mV=Å, magnitude of disorder r ¼ 0:1 eV and correlation exponent a ¼ 1. Light and dark regions indicate
nonzero and zero values, respectively.

Fig. 3. Same as in Fig. 2 but considering the correlation exponent a ¼ 5.
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panels) in a lattice of N ¼ 750 sites as a function of position and
time for a single realization of disorder. The parameters considered
are v ¼ 0:3 eV=Å; F ¼ 3:0 mV=Å, and magnitude of disorder
r ¼ 0:1 eV. Notice that this magnitude of disorder is of the order
of the nearest-neighbor hopping T. The correlation exponent is
a ¼ 1 in Fig. 2 (weak correlations) while a ¼ 5 in Fig. 3 (strong
correlations).

No signatures of BOs are revealed in the wave packet dynamics
shown in Fig. 2b, as a clear indication of the occurrence of disorder-
induced dephasing effects, expected in the weakly correlated re-
gime [42]. However, the lattice dynamics seems to present weak
traces of a periodic time-evolution, as seen in Fig. 2a. On the con-
trary, at a ¼ 5 in Fig. 3, the density plots show well behaving oscil-
lations of the carrier and the lattice, demonstrating that strong
correlations enhance the coherence necessary for sustained BOs
to arise.

In order to make clear which frequencies are involved in the
carrier and the lattice time-evolution, we calculate the Fourier
spectrum of the time-dependent magnitudes cðtÞ and lðtÞ, defined
as follows

cðtÞ ¼ xðtÞ � xð0Þ; xðtÞ ¼
XN

n¼1

njwnðtÞj
2
; ð6aÞ

lðtÞ ¼ nðtÞ � nð0Þ; nðtÞ ¼
XN

n¼1

nynðtÞ=a: ð6bÞ
The lower panel of Fig. 4a confirms that in the case of weakly
correlated systems, no well defined oscillations are performed by
the wave packet of the carrier and therefore, a variety of several
peaks arise in the Fourier spectrum of its centroid, cðtÞ. On the con-
trary, in the upper panel the analogous magnitude for the lattice
distortion, lðtÞ, reveals a clear oscillatory behavior, as we already
presumed in the preceding paragraph. Similarly to what happens
in the case of the homogeneous molecule (see Ref. [31]), it oscil-
lates with a main frequency of 7.22 THz close to the Morse fre-
quency of the system xM ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=m

p
¼ 7:138 THz according to

its Fourier spectrum. Nevertheless, in the disordered situation
there is no other peak related to the Bloch frequency which indeed
appeared in the homogeneous molecule [31]. Therefore, we claim
that the dynamics of the disordered molecule is mainly defined
by the Morse potential and it is even more decoupled from the car-
rier one than in homogeneous DNA molecules.

On the other hand, Fig. 4b confirms the results observed in Fig. 3
for the strongly correlated regime. Thus, well behaving BOs appear
in the time-evolution of the magnitudes cðtÞ and lðtÞ. The Fourier
spectrum of lðtÞ turns out to be single-peaked again at the Morse
frequency as in the weakly correlated regime, while that associated
to cðtÞ reveals now a well defined peak at 17.0 THz. Notice that this
frequency is shifted with respect to the semiclassical expected va-
lue of the Bloch frequency xB ¼ eFa=�h ¼ 15:502 THz.

This deviation can be understood by looking at the particular
energy landscape of the considered realization of disorder. To this
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Fig. 4. Centroid of the carrier wave function, cðtÞ, and lðtÞ as a function of time in a disordered lattice of N ¼ 750 sites for v ¼ 0:3 eV=Å and F ¼ 3:0 mV=Å. The magnitude of
disorder is set to r ¼ 0:1 eV and the correlation exponents are (a) a ¼ 1 and (b) a ¼ 5. The insets show the corresponding Fourier transforms.
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Fig. 5. Energy landscape for a single realization of the disorder distribution Eq. (2)
for a correlation exponent a ¼ 5 and a system of N ¼ 750 sites. The simplified
energy landscape defined by the first term of the distribution is also displayed.
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end, we take advantage of the simplification proposed in Ref. [43]
for strong correlated systems (see Fig. 5). According to that ap-
proach, in the case of strong correlations the whole distribution
(2) can be substituted by the first term of the sum

en � rCa cosð2pn=N þ /1Þ: ð7Þ

This is the dominant term in (2) when a is large, which is given by
the random phase /1. In our simulation the phase randomly gener-
ated was /1 ¼ 5:28 rad. Fig. 5 shows the actual energy landscape of
the single realization used in our simulations as well as the simpli-
fied one (7). Notice that such an energy landscape gives rise to a
new tilted potential at the center of the lattice, which is to be added
to the linear applied bias.

The effective potential drop across one lattice period created by
(7) at the initial mean position of the polaron N=2 is Ueff ¼ na sin /1,
with na ¼ 2prCa=Na. In the case of our random realization
(/1 ¼ 5:28 rad) it results in an effective bias of Ueff � �1:0 meV=Å.
The term Ueff n is to be added to Eq. (1) in such a way that the poten-
tial energy drop across one period of the lattice becomes now
�ðU � Ueff Þ. Thus, the semiclassical Bloch frequency under such
conditions is x�B ¼ ðU � Ueff Þ=�h � 17:0 THz, which is in prefect
agreement with the position of the single peak revealed by the Fou-
rier spectrum of the centroid cðtÞ (see Fig. 4b). It is worth mention-
ing that the effective potential created by (2) was approximated by
a linear profile at the center of the molecule. In those realizations of
disorder where this is not the case, the previously introduced effec-
tive potential drop Ueff is actually not well defined. Thus, despite
finding well behaving oscillations of the wave function, the Fourier
spectrum of cðtÞ becomes more complex, presenting several peaks
around the semiclassical value of the Bloch frequency.

For completeness we also study the dynamics of the wave func-
tion for different values of the carrier-lattice coupling and applied
bias in the strongly correlated limit. Bear in mind that the lattice
dynamics is defined in all cases by the Morse potential, not
depending on the remaining model parameters as we already dem-
onstrated. Our results, summarized in Fig. 6, show that for all con-
sidered parameters the carrier wave function performs well
behaving oscillations, whose amplitude and period depend on
the bias strength as expected for BOs, namely LB / 1=U and
sB / 1=U [29,30]. On the other hand, these oscillations behave sim-
ilarly for different values of the carrier-lattice coupling. In this re-
spect notice that for a small coupling (i.e. v ¼ 0:1 eV=Å) the
polaron extends over a larger number of nucleotides and it is more
easily affected by disorder effects, leading to a faster transforma-
tion of the initial shape of the wave packet. We stress that the
DNA molecule should be long enough to support the oscillating
carrier dynamics at low fields (the amplitude of the BOs increases
by decreasing the applied bias).

5. Average current density

In view of the oscillatory motion performed by the wave packet
of the carrier in the strongly correlated regime, a similar time-
dependent dynamics is expected for the average current density
defined as follows [49]

JðtÞ ¼ �he

meNa2

XN

n¼1

Im w�nðwnþ1 � wn�1Þ
� �

: ð8Þ

Here me is the mass of the carrier. Indeed, the oscillation frequency
of JðtÞ is slightly shifted from the predicted Bloch frequency in



Fig. 6. Modulus of the carrier wave packet as a function of position and time for a single realization of disorder (r ¼ 0:1 eV and a ¼ 5). The considered parameters for the
biased molecule are the following: (a) N ¼ 750;v ¼ 0:3 eV=Å and F ¼ 0:3 mV=Å, (b) N ¼ 1250;v ¼ 0:1 eV=Å and F ¼ 3:0 mV=Å and (c) N ¼ 1250;v ¼ 0:1 eV=Å and
F ¼ 0:3 mV=Å.
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disordered lattices. Moreover, this shift was proven to depend on the
particular realization of disorder in the previous section. Therefore,
by considering the Fourier transform JðxÞ of an ensemble of disor-
dered sequences, one can obtain the frequency probability distribu-
tion of JðtÞ centered at the semiclassical Bloch frequency. The width
of this distribution, rx, might be estimated within the same reason-
ing introduced in the preceding section: the effective disorder-in-
duced bias Ueff is proportional to the frequency shift of the Fourier
peak of JðxÞ with respect to the semiclassical value xB. Thus, its
probability distribution coincides with the one of the shifted fre-
quencies of JðtÞ for different realizations of disordered sequences.

This probability distribution can be analytically calculated
keeping in mind that the randomness of (2) arises from the set of
N=2 independent random phases /1; . . . ;/N=2 uniformly distributed
within the interval ½0;2p�. Therefore, one can write PðUeff ÞdUeff ¼
Pð/Þd/ and the following distribution for the effective fields is
obtained

PðUeffÞ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
a � U2

eff

q ; ð9Þ

with jUeff j 6 na. This probability distribution diverges at the edges
and its width is given by rx ¼ 2na. Thus, it is inversely proportional
to the number of base pairs N.
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Fig. 7. Average Fourier transform of the current density JðtÞ of 100 different
realizations of disorder. The parameters used in the calculations are
v ¼ 0:1 eV=Å; F ¼ 3:0 mV=Å;r ¼ 0:1 eV and a ¼ 5. Four different sizes of the system
are considered. The inset displays logðrxÞ versus logðNÞ as well as the fitting of the
data.
Our numerical calculations prove the validity of the above ap-
proach. To this end, we calculate JðtÞ and the average Fourier spec-
trum hJðxÞi for an ensemble of disorder realizations. We repeat
this procedure for four different sizes of the system
N ¼ 750;N ¼ 1000;N ¼ 1250, and N ¼ 1500 and display simulta-
neously our results in Fig. 7. This figure clearly demonstrates that
the width of hJðxÞi decreases upon increasing the number of nucle-
otides. This means that disorder effects are less relevant in longer
molecules and therefore, the average current density oscillates
with a frequency closer to the Bloch frequency.

On the other hand, our calculations are in good agreement with
the above proposed approach to describe the dispersion of the
oscillation frequencies of JðtÞ in disordered systems. We find a
size-dependence rx / 1=N0:90, close to that predicted rx / 1=N.
Needless to say that the different exponent comes from the
approximations considered in our approach, namely the replace-
ment of the energy landscape by a sine-like function, the absence
of the charge-lattice coupling and the definition of the Ueff as the
effective bias created at a single site of the molecule.
6. Conclusions

The polaron dynamics was studied in synthetic DNA molecules
with long-range correlations in the sequence of molecular levels. It
is well established that, neglecting the charge-lattice interaction,
the electron undergoes coherent and harmonic oscillations in
biased uniform lattices, known as Bloch oscillations [29,30]. Be-
sides, in a recent work [31] it was theoretically demonstrated that
these oscillations might even occur when dealing with polaron
states within the PBH model, which accurately describes the DNA
dynamics [45,48–50,52]. This leads to the existence of oscillating
currents across DNA homopolymers.

We have focused on sequences presenting long-range correla-
tions [32–38]. Therefore, the molecular levels of the nucleotides
were generated according to the long-range correlated sequence
proposed in Ref. [39]. Regarding the long-range correlations effects,
and despite the disorder-induced dephasing processes, we still
found an oscillatory carrier dynamics for strong correlations. Its
frequency turned out to be shifted with respect to the semiclassical
value of the Bloch frequency. We theoretically explained this shift
by extending a simplified approach formerly proposed in Ref. [43].

The oscillatory carrier dynamics leads to alternating currents
across the DNA molecule whose frequency lies in the THz range,
which might be useful in nanoelectronic applications. We calcu-
lated the averaged Fourier transform of the electric current in an
ensemble of disordered DNA sequences. The frequency dispersion
around the Bloch frequency decreases by considering larger sys-
tems, where disorder effects seem to be less relevant. We were
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able to explain this conclusion by means of the simplified analyti-
cal approach.

It is to be mentioned that, apart from the disorder-induced
effects, scattering by phonons also destroys the phase coherence
at times larger than the scattering time s and therefore, BOs can
hardly be observed at such time-scales. Lakhno and Fialko [27]
estimated that the temperature Tmin below which BOs take
place at a given magnitude of the electric field is Tmin ’
0:45T0ðxBs0Þ1=2:3. For instance at the field magnitude F = 3.0 mV/
Å, BOs might be observed at T < Tmin ¼ 50 K. Larger electric fields
are applied in the conducting experiments on DNA which raise this
threshold temperature.
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