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A solvable Hamiltonian for two Dirac particles interacting by instantaneous linear potentials in ( 1  + 1) dimensions is 
discussed. The system presents no Klein paradox even if the coupling is rather strong, so particles remain bound. The four 
independent components of the wave function describing the system resemble the nonrelativistic oscillator eigenfunctions. 
Although the Hamiltonian is not fully covariant, the effective frequency of the oscillator obeys a typical relativistic Doppler 
law. In contrast to the nonrelativistic treatment, eigenstates are intrinsically coupled with the overall translational motion of 
the system. 

Une hamiltonienne soluble pour deux particules de Dirac interagissant par des potentiels linkaires instantan& en ( 1  + I )  
dimensions, est discutke. Le systtme ne presente pas de paradoxe de Klein m&me si le couplage est plutdt fort, de sorte que 
les particules demeurent likes. Les quatre composantes indkpendantes de la fonction d'onde dkcrivant le systkme ressemblent 
aux fonctions propres de l'oscillateur non relativiste. Bien que I'hamiltonienne soit pas pleinement covariante, la frkquence 
effective de l'oscillateur obkit a une loi Doppler relativiste typique. Contrairement au traitement non relativiste, les ktats propres 
sont couples intrinstquement avec le mouvement de translation de l'ensemble du systtme. 

[Traduit par la rkdaction] 
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1. Introduction 
There exist a number of potentials depending linearly on spa- 

tial coordinates for which the one-body Dirac equation is exactly 
solvable (1). Such potentials appear in the study of the motion 
of particles in uniform electric and magnetic fields and more 
recently in the description of the dynamics of quarks. Since 
linear electrostatic potentials present no binding of particles, 
Ito et al.  (2) and Cook (3) introduced a new type of linear 
interaction to explain baryon spectra. The resulting relativistic 
equation can be solved exactly. Recently, Moshinsky and 
Szczepaniak (4) gave this problem the name Dirac oscillator. 
These authors have argued that the one-body Dirac equation 
representing a relativistic oscillator should be linear in both 
coordinates and momenta, as the Schrodinger equation for the 
standard oscillator is quadratic in both coordinates and 
momenta. They found the eigenstates and eigenvalues in a fairly 
straightforward fashion, since the equations satisfied by the 
components of the Dirac wave function turn out to be the 
Schrodinger equation for the standard oscillator plus a strong 
spin-orbit coupling (this term is absent in (1 + 1) dimensions). 
Hence, the Dirac oscillator equation presents the binding of 
particles and could be an alternative way to describe the con- 
finement of quarks ( 5 ) .  The electromagnetic potential associ- 
ated with this interaction has been found by Benitez et al.  (6). 

Ravndal (7) has considered a different way to obtain oscil- 
lator-type solutions for relativistic wave functions. This author 
has introduced an equal admixture of vector plus scalar quad- 
ratic potentials in the one-body Dirac equation, which then 
reduces to a Schrodinger-like harmonic oscillator equation. 
Nevertheless the basic wave equation of Ravndal's model is 
less symmetric than that of the Dirac oscillator, in the sense 
that it is linear in momenta but quadratic in coordinates. 

The two above mentioned relativistic oscillator models (4, 7) 
use the one-body Dirac equation as a starting point. For two 
interacting Dirac particles, however, the applicability of these 
models is only justified whenever one of the particles is much 
heavier than the other. In general situations, when the masses 
of particles are comparable or just equal, recoil effects become 
important, especially in a relativistic regime. Hence a relativ- 
istic two-body equation must be used. The corresponding two- 

body problem was first discussed by Cook (3), in both (1 + 
1) and (3 + 1) dimensions. He assumed that the dynamics of 
the system was described by the Bethe-Salpeter equation. 
Moshinsky et al.  (8) generalized the Dirac-oscillator Hamil- 
tonian in (3 + 1) dimensions to a two-body system with equal 
masses and whose center of mass is at rest. The aim of this 
work is to introduce a solvable model for two Dirac particles 
with arbitrary masses in (1 + 1) dimensions, which resembles 
the harmonic oscillator coupling in the nonrelativistic limit. The 
basic equation we use is the two-body Dirac equation as defined 
by Glockle et al. (9). The two particles are considered to be at 
equal times, so the equation is not manifestly covariant. In fact, 
for interactions depending upon the spatial separation between 
particles, covariance is only guaranteed if the interaction is 6- 
shaped, because only a mathematical point has a relativistically 
invariant shape. In spite of this simplification, we start with 
that equation to construct a two-body Dirac-oscillator model. 
The degree of noncovariance of the composite system will also 
be examined. -- - 

We found it most aepropriate to deal with linear interactions 
rather than quadratic interactions. We have not been able to 
reduce the two-body Dirac equation for an equal mixture of 
vector and scalar quadratic potentials to a Schrodinger-like 
oscillator equation, unless the coupling is weak. Fortunately, 
the situation is more favourable in the case of potentials depend- 
ing linearly on the distance between the particles. The two-body 
Dirac equation we consider approaches the results found by 
Moshinsky and Szczepaniak (4), if one of the constituent par- 
ticles has infinite mass. We will focus mainly, however, on the 
case of two particles with equal masses. A detailed analysis of 
the binding energy will allow us to discuss some interesting 
features of the composite system, which are not found in the 
single-particle treatment. 

2. General equations 
We follow the notation of Glockle et al. (9) in studying the 

Dirac equation in one space dimension for two interacting par- 
ticles of masses m,  and m,. The basic equation describing the 
steady states of the system reads as follows: 
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[2.1] H'P = E'P 

Here the Hamiltonian has the form 

Hk being the one-particle Dirac Hamiltonian defined as 

and the interaction potential V,,,, which will be specified below, 
is assumed to be dependent only upon the relative coordinate 
x,-x,. Space coordinates and momenta satisfy the usual 
relations 

The 2 x 2 Dirac matrices a and P anticommute and are trace- 
less Hermitians with square unity. We choose the representation 

For an interaction depending on x, - x2, it is appropriate to 
make a canonical transformation to total and relative coordi- 
nates and momenta. Thus we introduce 

and 

where 

To obtain the specific form of the interaction potential V,,, 
we replace p ,  and p, by p ,  - i m , y , o ~ ,  (x, - x2) and 
p2 - im2y2wP2 (x, - x,), respectively, in the free Hamiltonian 
H I  + H,. Therefore, the interaction potential is found to be 

which is linear in the relative coordinate x. o denotes the oscil- 
lator frequency and the y's are dimensionless quantities 
depending on the particle masses, such that y ,  and y2 approach 
1 and 0 ,  respectively, as m2 becomes very large (i.e., one par- 
ticle much heavier than the other). This choice ensures the 
existence of a one-body Dirac oscillator equation, as defined 
by Moshinsky and Szczepaniak (4), for the lighter particle in 
that limiting case. Hence we can choose y ,  = F, and y, = 

P I .  
Taking into account the above prescriptions, the form of the 

two-body Hamiltonian [2.2] becomes 

where P = m,m2/(ml + m,) is the reduced mass of the system. 
Note that the Hamiltonian obtained is Hermitian and independ- 
ent of the total coordinate X. Since [P, HI  = 0, the momentum 
P of the center of mass (cm) is a constant of motion. In addition, 
the Hamiltonian is invariant under the interchange of particles, 
H(1, 2) = H (2, I). 

In solving [2.1] we expand !P in terms of the eigenvectors 
of the operator P I  P,. 

+ *- + (x)x-+ + * - (x)x-- 

where 

The system may be described by four independent components. 
According to G16ckle et al. (9), it is convenient to use com- 
binations of $, , 

12.71 exp (iPX) = - 
fi * - +  + * + -  

* - +  - * + -  

P being the eigenvalue of the momentum of the cm. We find 
the following four coupled equations 

[2.8a] P q 3  + (m, + m,) 9, - Eql  + 2i~oxcp4 = 0 

[2.8cl P q ,  - (mi - m2)q4 - Eq3 = 0 

This set of equations describes the motion of two particles 
of arbitrary masses m, and m, under the action of the interaction 
given above. At this point, we do not solve it explicitly. How- 
ever, it is an easy matter, although laborious, to check that q, 
satisfies a Schrodinger-like oscillator equation, with an effec- 
tive frequency depending on the particle masses, the energy, 
and the momentum P .  Hence, the resulting states are certainly 
bound, no matter how small o is. The composite system is free 
from the Klein paradox; unlike the.case of particles interacting 
through Lorentz-vector linear potentials (the time component 
of a four vector) the leakage of particles to infinity is avoided. 
To our understanding, this result is one of the main virtues of 
the linear interaction we have introduced. 

3. Reduction to one-body Dirac oscillator 
To get insight into the problem, we first consider the limiting 

case in which one of the masses, say m,, becomes very large. 
Denoting E l  = E - m, the total energy of the light particle 
and then taking the limit m2 + m, [2.8] reduce in the cm frame 
(P = 0) to 
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The energy of the particle is quantized according to 

[3.lbl c p 3 = c p ,  

13.1~1 (p ,  + im,oxl)cp4 + (ml - E,)cp2 = 0 

[3.ldl  (p ,  - im,o x,)cp2 - (m, + E,)cp, = 0 

where we have set x2 = 0. Thus from the definition of the cp's, 

* + +  = f i c p 2  

* - +  = d c p 4  

Using the last two equations, one can write in a more closed 
notation 

This is nothing but the Dirac oscillator equation for the light 
particle as proposed by Moshinsky and Szczepaniak (4). Note 
that it may be directly obtained from the one-body free Dirac 
equation replacingp, by p ,  - im1w x,P, .  The whole system is 
described by just two independent components, as usual for a 
single Dirac particle in (1 + 1) dimensions. 

Equation [3.2] is easily decoupled to give 

and 

[3.3bl (P: + m:02x:) *+ + (XI) 

The upper component $+ + satisfies the standard harmonic 
oscillator equation, whose solutions are readily found. Using 
the normalization condition 

\ I I *  + , I 2  + I -  + (x1)12) = 1 

we get 

Two values (positive and negative) of the energy are possible 
for each value of w and n 3 1, so this potential can bind particles 
as well as antiparticles. The fact that bound states 
actually appear in pairs (except for the ground state) also occurs 
for the Dirac equation with Lorentz scalar interactions (10). 
Note that $- + ($+ +) vanishes in the nonrelativistic limit E 3 
m (E - m) for weak coupling m, 9 o ,  and Jr+  + ($- +)  
agrees with the usual Schrodinger eigenfunction. 

The energy of the light particle depends on the mass m,; 
however, this situation is quite different from the results found 
for the Dirac equation with linear scalar interactions. In the 
former case E l  reaches the value m, as the interaction is adi- 
abatically switched off, while in the latter case the energy of 
the particle vanishes (I I). 

The lowest lying energy levels of the particle (El 3 m,) can 
be approximately given by E l  - m, = o n in the weak-cou- 
pling limit, with n = 0, 1 ; . . . The ground-state energy is 
shifted downward by 012 in'relation to the standard oscillator, 
but the spacing between levels is the same. At high energy, 
however, the energy levels rise as the square root of the fre- 
quency, and the spacing of levels becomes dependent on the 
quantum number n. 

4. Two particles with equal masses 
In this section we discuss the case of two interacting particles 

with equal masses m, = m2 = m. Hence [2] leads to the fol- 
lowing set of equations 

4 m  
[4.la]  cp, = 

E2L2(P) - 4 m2 (p + i?)cp4 

s 

2 E P  (P) J m2 o 
14' 

q2  = ~ 7 . ~ 2  (p) - 4 m2 

and 

1 
[4. l d ]  [p2 + m202 (P)x21cp4 = - 

L2 (PI 
and with the aid of [3.3a] 

where n is a nonnegative integer. The normalization constant 
Nn is given by 

where o(P) = o/2L(P) is the effective frequency and L(P) = 
(1 - P2/E2)1'2 is the Lorentz-contraction factor. We obtain a 
standard oscillator equation for the component cp,. The effec- 
tive frequency w(P) of the oscillator depends on the energy and 
momentum of the cm and it transforms as o(P)  = w(O)IL(P), 
where w(0) = 012. Consequently, a change in the effective 
frequency does take place according to the relativistic Doppler 
law, so w(P) is in fact covariant despite the noncovariance of 
the instantaneous two-body Dirac equation. 
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From [4. Id] one can easily find cp,, and the other three com- 
ponents can be directly calculated from cp, using [4.la]-[4. lc]. 
In the cm frame, the components of the eigenfunction are writ- 
ten as 

and using the normalization condition 

the normalization constant is found to be 

The energy levels are given through the expression 

n being a nonnegative integer. since the right-hand side of [4.4] 
is not Lorentz invariant, we come to the conclusion that the cm 
motion affects the internal structure of the system. Energy levels 
change when the system is boosted, but not according to any 
Lorentz transform. Nevertheless, if momentum P is much 
smaller than the rest mass of the constituent particles, we get 

and the system approaches covariance (i.e., E(P) transform 
according to the Lorentz law) in the weak-coupling limit. In 
the relativistic regime for strong coupling E S- 2m S o the 
covariance of the system is broken. This is because the particles 

FIG. 1. Energy levels (n 2 1) as a function of the oscillator fre- 
quency for particle-particle (upper lines), particle-antiparticle (mid- 
dle lines), and antiparticle-antiparticle (lower lines) systems. 

were initially considered to be at equal times, so a nonzero- 
ranged potential makes it impossible to construct a Lorentz- 
boost operator (9). 

In the cm frame (P = O), [4.4] reduces to a polynomial of 
degree 3 in the variable El,. Therefore, for a fixed n there exist 
three real solutions. For n = 0, however, only two of them are 
physically acceptable solutions. The remaining one, which is 
found to be E = - 2m, irrespective of w, leads to a vanishing 
wave function. For n 3 1 the three solutions are valid (Fig. 1). 
Following Coutinho et al. (12), we classify the bound states of 
the composite system as normal and abnormal. The energy of 
normal bound states approaches k 2 m  in the vanishing inter- 
action limit, whereas for abnormal solutions the energy reaches 
zero in that limiting sijuation. In view of the Dirac hole theory, 
one should consider fPormal solutions to represent bound states 
of particle-particle and antiparticle-antiparticle systems, while 
abnormal solutions would describe particle-antiparticle pairs. 
Accordingly, the energy of the composite system when the 
interaction is adiabatically switched off approaches the sum of 
the constituent masses (+ m + m, - m - m, and + m - m). 

The energy of normal states in the cm frame can be approx- 
imately calculated as 

so the energy levels also appear in pairs, within that approxi- 
mation (see Fig. 1). For weak coupling, the energy of the low- 
est lying normal state is 

E,, (0) - 2m = o (n + 1) 

and the spacing between energy levels is 
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FIG. 2. Depression of relativistic energy levels (solid lines) for par- 
ticle-particle systems compared with the nonrelativistic prediction 
(broken lines). 

as occurs in the nonrelativistic oscillator. On the contrary, if o 
is much larger than the rest mass, E,,(O) rises as the square root 
of o. Hence, the effect of relativity is a depression of the oscil- 
lator levels from the nonrelativistic prediction, as shown in 
Fig. 2. The result that the levels are no longer evenly spaced 
is also found in more sophisticated relativistic oscillator models, 
based on the Bethe-Salpeter equation (13). 

To obtain the energy of the abnormal solutions as o + O f ,  
we consider the limit E,, + 0 -  in [4.4] in the cm frame. In so 
doing, we find 

The ground and excited states of the particle-antiparticle sys- 
tem have nearly the same energy - o, since the splitting of the 
levels due to quantum number n is of higher order in o. The 
spacing of the energy levels is then given by 

being smaller than the spacing between normal state levels. 
In the opposite case, for which the coupling strength is much 

larger than the rest mass of the constituent particles, abnormal 
energy levels are given by 

Therefore, the binding energy of the particle-antiparticle sys- 
tem for strong coupling becomes independent of the coupling 
constant and it is of the order of the rest mass of the particles, 
as depicted in Fig. 1. For large n values, the spacing between 
levels is given approximately by 

Having disposed of the energy levels for normal and abnor- 
mal states, we briefly examine the behaviour of the eigenfunc- 
tion components given by [4.2], in the nonrelativistic limit for 
weak coupling. In that limiting case, the large components of 
the eigenfunction for particle-particle (E 2m) and antipar- 
ticle-antiparticle (E = - 2m) systems are $ + + and (I - - , 
respectively, as can be easily seen by inspection of 14.21 and 
[4.3]. On the contrary, abnormal solutions (E 0) predomi- 
nantly consist of $ + _ and $ - + , while $ + + and (I _ _ are neg- 
ligible. At relativistic energies, however, the components are 
of the same order of magnitude, as occurs in the one-body Dirac 
equation. 

Before concluding, let us comment that, unlike the case of 
the square-well potential discussed by Coutinho et al .  (12), the 
abnormal states of the two-body Dirac oscillator are not strongly 
localized. For a shallow square well, the spread of the wave 
function outside the well may be roughly estimated as m - ' ,  
while the two-body Dirac oscillator is localized in a distance 
of the order of ( m o ) " ' ,  bqcoming very large when the cou- 
pling is weak. 

5. Concluding remarks 
It is hard to find in the literature solvable potentials for two 

interacting Dirac particles in (1 + 1) dimensions. Some works 
deal with the 6 interaction (9) and the square-well potential 
(12), for which the energy levels can be explicitly written down. 
In this paper we have introduced a linear interaction in the two- 
body Dirac equation, which allows us to find analytical solu- 
tions. All the states obtained are bound; there exists no critical 
value for the coupling constant to bind particles. As a conse- 
quence, the Klein paradox has been overcome, avoiding the 
leakage of particles to infinity. Eigenfunctions are simply given 
in terms of Hermite polynomials times the usual exponential 
factor. 

Allowing one of the masses to be infinite, we have shown 
that the eigenfunction of the light particle satisfies the Dirac 
oscillator equation, previously introduced by Moshinsky and 
Szczepaniak (4). More interesting results appear in the case of 
two interacting particks of equal masses. The effective fre- 
quency of the oscillZtor obeys a relativistic Doppler law, 
although the starting equation is not fully covariant. For given 
values of the coupling constant and the quantum number, there 
exist three possible values of the energy, corresponding to par- 
ticle-particle, antiparticle-antiparticle, and particle-antiparti- 
cle systems. In the weak-coupling limit, the energy of the sys- 
tem approaches the sum of the constituent particles (2m, - 2m, 
and zero, respectively). For particle-particle and antiparticle- 
antiparticle systems, a depression of energy levels appears in 
relation to the nonrelativistic predictions, when the interaction 
is strong. We have demonstrated the existence of an infinite 
degeneracy of levels accumulating just below E = 0 for the 
particle-antiparticle system, as the coupling constant becomes 
vanishingly small. On the contrary, in the case of very large 
coupling constant, the binding energy of this system has been 
found to be independent of this parameter. 
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