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Bound states of spinless particles with Coulomb interaction in the momentum
representation
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Bound-state solutions of the Klein—-Gordon Coulomb equation for vector and scalar potentials are investigated in the
momentum representation. The collapse of the particle to the center for strong vector potentials is found. The corresponding
wave function shows an anomalous oscillatory behaviour for large particle momentum. Particle collapse for strong scalar

potentials does not exist.

L'on étudie les états liés & I"équation Klein—Gordon avec des potentiels coulombiens vectoriels et scalaires, dont les
représentations d’impulsion. L'on y voit que la particule collapse vers le centre pour des potentiels forts. La fonction d’onde
correspondante présente un comportement oscillatoire anormal pour de grandes valeurs de I'impulsion de 1z particule. Ce

collapse ne se présenie pas dans le cas de potenticls scalaires,
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1. Introduction

The Klein—Gordon equation (KGE) was the first relativistic
quantam mechanical wave equation {1, 2). Nevertheless, the
KGE was temporarily discarded, since the predicted spread of
the fine structure of the H atom levels was much larger than
was observed experimentally. The search for new relativistic
equations culminated in the Dirac equation (3). At present, it
is well known that the KGE describes a particle that has no
spin, while the Dirac equation holds for spin 1/2 particles. In
the last decade, the energy levels of spinless particles in the
Coulomb field (for instance, pionic atoms) have been mea-
sured (4) and the KGE correctly predicts this spectrum. Hence,
the oniginal interest shown in this equation has been renewed.

The KGE for the Coulomb potential can be easily rewritten
in the Schridinger form (35), in the position representation,
even in N-space dimensions {6). We shall see that the above
statement also holds in the momentum representation. The
momentum operators, in general curvilinear coordinates, have
recently been discussed and reviewed by Zhang (7); in partic-
ular, the Hermiticity of these operators in spherical polar coor-
dinates has been reexamined. In previous works, Lombardi
(8, 9) has shown that for spherical polar coordinates the trans-
form preserving the conjugate character of the variables is not
of the Fourier type. The Fourier-transform space cannot be
regarded as a true momentum space, since the variables, rep-
resenting the total momentum and its polar coordinates, are
not conjugate to any of the relevant spatial variables; in addi-
tion, these polar coordinates are not found to be Hermitian, so
they do not represent physical magnitudes. Lombardi has
solved the angular and the radial parts of the Schrodinger (8)
and the Dirac (9) equations in a true momentum representation
for particles in the electrostatic Coulomb potential. The radial
wave function is solved with the aid of fractional-calculus
technigues. In discussing his results, this author alse pointed
out that the momentum wave function for Dirac particles in a
strong Coulomb field break down mathematically, as occurs
in the position representation for such a potential.

One of the aims of this work is to extend previous treat-
ments, including relativistic spinless particles, by solving the
KGE directly in the momentum representation. In so doing,
we shall be led to a second-order differential equation for the
momentum wave function. Solutions of the radial equation are
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found by means of the usual techniques of differential equa-
tions, so we avoid the less common fractional calculus to clar-
ify the solution of the problem. Provided that the bound-state
solutions are square-integrable solutions, the energy levels of
the particle are found in a straightforward manner. We also
discuss the wave-function behaviour as the electrostatic poten-
tial becomes very strong; we shall come to the conclusion that
single-particle wave equation can no longer describe spinless
particles in a strong external Coulomb field (just as occurs for
T mesons in superheavy nuclei). A relativistic field theory is
indeed required to fully understand the phenomenon. Before
concluding, however, a simple way to smear out the Coulomb
singularity will be shown, if the single-particle treatment in
the moment representation is to be retained.

2. Bound state solutions

As a generalization, we consider not only electrostatic
potentials V() (the time component of a four-vector) but also
scalar S(r) Coulomb potentials in the KGE. A scalar potential
means that the particle mass is regarded as a function of the
position. This kind of coupling can play an important role in
describing spinless mesons like the o meson, on which the
well-known o model of Gell-Mann and Lévy is based. The
scalar Coulomb potential could originate from the exchange of
massless scalar mesons between particles, in the same way as
the electrostatic Coulemb field arises from the exchange of
photons (10). To find the particle wave function for such a
coupling, we replace m by m+ 5(r) in the usual KGE, which
is then written as (A = ¢ = 1)

(1 {p* + om + S0 — (E - VOle (@ =0

where V(r) = —K,/r and S(r) = — K, /r. The angular part
of the wave function in the momentum space becomes iden-
tical to the nonrelativistic results previously derived (8) and
here we shall omit any detail. The radial part of the wave
function is obtained from the following equation

2
[2] {—(—d—+l) BRI R
dr r r
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with s(s + 1) = (! + 1) + K? — K2 The possible values
of the parameter s are

s. = — 1/2 = (/D2 + 1) + 4K% — 4K7)'2

which satisfy 1 + s_. = —s5. For the moment, we consider
only the real values of these parameters; in the next section
we extend the discussions for including complex values of 5.

To determine the equation geverning the wave function Y(p)
in the momentum representation, we would make the follow-
ing opetator replacements in [1]:

d 1 P

3 —i|—=+=]— ———i '
S R e
where p is the Hermitian conjugate of r satisfying |r,p] = i
The lower limit of integration is chosen to ensure the condition

r rd(p))y = W(p). Transforming to momentum space we
obtain

[4) @ + m* = EDU(p) + 2UEK, + mK) fdp' ()
= 5.+ J dp’_[ dp” $(p") = 0

Ditferentiating [4] twice with respect to p (this is equivalent
to multiplying the KGE by a factor of /2 in the position rep-
resentation) we are led to a second-order differential equation.
For the sake of simplicily we also introduce the dimensionless
parameters

M = (m’=EY)

B = (EK,+mK)/m
and the new variable

g = 2/[1+ip/m]

Finally, the following equation is obtained:

(real for bound states)

d? d
— 2 _= — -~
[5] (1 —q)q9 i + (Bg—2)q dq

+(2=s.—51) [Bg) = 0

which can be easily solved in terms of hypergeometric func-
tions ,F {a,b;c;z). The solution is as follows:

I6J '-b(q) = A(b(l +5:vB,Q) + Bd’(_S:'B,‘])
with
bz.B.g) = ¢ "' Fiz+1, 2—B; 2z g)

and A and B being two constants. Since 1+s5, = —s5; we
can choose a unique value of the parameter s, so we shall take
s = 5, = 5, hereafter (the subscript indicates the dependence
onl}.
The asymptotic behaviour of solution [6] for high momenta
is given by
Wp)~Alip/2m) 77 + Blip/2ny" !

Therefore, to obtain a finite expectation value for the operator
rio-[wfw

appcaring in the KGE, we reach the conclusion that B must

vanish. The first term alse diverges at low mometum values

(g — 2), unless the hypergeometric function is reduced to a
polynomial expression. The quantum condition B — s,= n—1
is then reached, r = 1,2,... being the principal quantum num-
ber (the usual inequality n = [ + 1 is deduced by taking into
account 3 — 5, must be a nonzero positive integer). This con-
dition leads to the following equation for the allowed energy
levels of the particle:

7]+ (m* — E2)Y? = E, K [(n—I+5) EK >0

in a pure vector Coulomb field (K, = 0), which is, of course,
the same equation as that obtained by solving the KGE in the
position representation. Note that this expression (and also the
KGE) is invariant under the transformation £ — —F, K, —
—K,. This means that bound-state energies are positive for
attractive potentials (K, > (), and that the binding or particles
with negative energy for repulsive potentials (K, < 0) exists.

For pure scalar Coulomb potential (K, = 0), the energy
levels are found through the relation

8]  +(m2—-E2)V2 = mK J(n—-1+s)

Pairs of energy levels appear in the case of attractive potentials
K, > 0 ([8] and the KGE remains unchanged by transforming
E — —E). This result agrees with the fact that a pure scalar
potential can bind particles as well as antiparticles. There are
no bound states for repulsive potentials K, << 0.

From [6], the wave function in the momentum representa-
tion is found to be

K, >0

1+ip 17"
mZ—EL)7

ni-l ,(s1+2)z (1+l—n),
9] b, (p) = .‘—20 2 ] (25,+2),

where the normalization factor has been omitted. The Poch-
hammer symbol is defined in the usual form (a), = 1 and (a),
= a (a+1)..{a+r—1). In particular, the ground-state wave
function is easily written as

O] () = 1+ ip/m? — ED'/2=%2

whete E, denotes the ground-state energy.

As Lombardi pointed out {8), some advantages of using the
momentuem wave function are obtained as compared with the
usual position solution (written in terms of generalized
Laguerre polynomials) and to the standard Fourier-transform
solution (given by Gegenbauer polynomials). As seen from
[9], U{p) is expressed as finite sums over imaginary poles;
therefore, any matrix element is more easily calculated in the
momentum representation than in the position representation
if one invokes the tools of complex-plane calculus. Also, one
should consider the momentum p as a complex variable (this
fact cannot be deduced from the standard Fourier-transform
solution); poles of W(p) in the complex plane are related to
ionisation potentials and dipole moments. This realization
would be useful in relativistic treatments of multielectron atoms
and molecules, where the KGE could provide a first insight
into the problem. Obviously, these results could be subse-
quently improved by including the spin effects and the Darwin
potential in a variational or perturbative way.

3. Effects of strong coupling

In the previous section, only real values of 5, have been
considered; i.e., we have assumed that the condition K* — KZ
< (I + 1/2)* was fulfilled. This inequality allows us to find
normalizable wave functions, with the right behaviour for large
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p values; the energy of the particle is always a real quantity
and becomes quantized. Thus we are dealing with truly bound-
state solutions. On the other hand, for KZ—K> > (I + 1/2)°
the parameter 5, becomes a complex number and it is then
possible to write 5, = ~1/2 + iy, where

Y= KD - KD - (0 + 127

is a real parameter. Therefore, the wave function given in [6]
rapidly oscillates

U(p) ~ p~3* cos (v, log p + constant)

for large particle momenta, and hence it is found to be unnor-
malizable in the usual fashion. Moreover, in this case it is an
easy matter to see that the square of the operators given in [3],
which are related to the kinetic and potential energies of the
particle, present infinite expectation values. Although the
energy of the state satisfies the condition |E|<(m, it never
becomes a bound state. This anomalous behaviour, which does
not depend on the attractive or repulsive nature of the poten-
tials, should be regarded as a *‘collapse of the particle to the
center.’” As far as we know, this problem has only been treated
in the position representation before.

In the position representation, particle ‘‘falling’’ appears
when the wave function () oscillates rapidly near the origin
without reaching any limit (11, 12), presenting an essential
singularity at that point. Moreover, the energy spectrum
becomes continuous even if |E| < m, since no appropriate
boundary conditions exist at »=0. Solutions of the KGE in
the position representation show this particular behaviour for
K2—K? > (I+1/2) in the point-charge approximation for the
nuclear size (in ref. 13 Popov has found that the falling of
spin-0 particles occurs in electrostatic fields whenever |Kﬁ>(t
+ 1/2)). For the Dirac equation the collapse to the center
occurs for K2 — K2 > (j+1/2)* (see ref. 14 for a detailed
descrption of Dirac particles in overcritical electrostatic poten-
tials). To get seme insight into this problem, let us consider
the radial KGE for small r values (for simplicity we also take
=0

2
d 1 K -K
[11] { (dr+r) = }Mr)—o
which is a Schrodinger-like equation for the potential well
—(K2—K*/r. It is well known that [11] has no square-
integrable solutions for K2 — K2 > 1/4, in accordance with
our previous suggestion that there are simply no bound states
corresponding to large K,

To obtain further progress and substantiation on the behav-
iour of the particle wave function in strong electrostatic fields,
we (ransform [11] to momentum space by using the prescrip-
tions given in {3], and hence we obtain

121 p?

d- d
D2+ ap TP+ @ + K- KDUp) = 0
whose solution is readily found to be $i(p) = p*¥o~*2, showing
the anomalous oscillatory behaviour at large p values when
K2—K* > 1/4, as seen above. We conclude that the occur-
rence of an essential singularity in the position wave function
at the origin leads to the oscillations of the momentum wave
function for large p values. This can be roughly understood
by noting that the contribution of higher p values becomes
important only near the origin (large kinetic energy), so there

exists an obvious relation between (r) at the origin and Wip)
at high values of the particle momentum.

We should emphasize that the collapse of the particle has
been discussed in terms (and within the limitations) of a single-
particle wave equation. A many-particle approach is indeed
necessary for a full descripiion of strongly bound states (15).
By using these kinds of thzories, one notices that the vacuum
becomes unstable against the creation of an indefinite number
of virtual pairs, as the electrostatic coupling constant exceeds
the overcritical value. To guarantec stable bound states, one
must take into account the self-interaction of the boson field;
i.e., we need a relativistic field theory (16). This description
is beyond the scope of our single-particle treatment.

To extend the simple single-particle description of spinless
particles to include strong electrostatic fields, one should
assume some other physical considerations like the extended
charge of the nucleus or the vacuum polarization. Allowance
for the finite nuclear size avoids the collapse of the particle in
position space because the singularity of the potential at the
origin is removed. In addition, the vacuum polarization also
results in the regularization of the Coulomb potential near the
origin. Although the vacuum polarization is actually a many-
particle effect, one can deal with it by considering an effective
smooth potential at the origin in the single-particle wave equa-
tion. From the discussions above, one can observe that a “‘cut-
off>” P for large values of the particle momenturn would also
prevent particle falling. Therefore, the regulanzation of the
Coulomb potential in the momentum space can be achieved
by imposing a maximum particle momentum value P. The
value of P may be roughly estimated to be ~R "' because of
the uncertainty relation, where R denotes here the cut-off for
the Coulomb potential. For any arbitrarly large value of the
electrostatic coupling constant, bound states could indeed
appear by requring the boundary condition ys(F) = 0 whenever
the ground state does not dive into the continuum of negative
energy. This condition also guarantees finite expectation val-
ues of the kinetic and potential energies of the particle. Unfor-
tunately, it is also expected that the particle energy will
strongly depend on the cut-off momentum P. The limit of the
solutions as P -» = will not be defined when the potential
becomes overcritical.

Finally, note that this problem is absen{ for strong scalar
potentials since s, is always real in this case (K? > X?), no
matter how strong X is (also observe in [11] that the potential
termn » 2 behaves like a repulsive barrier rather than a well in
this situation). The energy levels are compressed altogether
and approach zero for strong coupling, as can be checked from
[8]. The particle remains bounded in this limit. This regular
behaviour could be easily explained if we note that the scalar
potential couples the mass rather than the charge, and hence
it cannot create charged virtual pairs, so the vacuum becomes
stable even for strong potentials.

4. Conclusions

We have reached the following conclusions:

1. The Klein—Gordon Coulomb equation with both vector-
and scalar-type potentials can be solved exactly in the
momentum representation for all partial waves. The wave
functions can be expressed as finite sums over poles lying
on the imaginary axis for bound states.

2. Positive and negative bound-state levels occur for aftractive
and repulsive vector potentials, respectively, provided that



DOMINGUEZ-ADAME

the coupling constant does not exceed the critical value /
+ 1/2. Pairs of bound-state levels appear (= E) for attrac-
tive scalar potentials. Nevertheless, there exists no binding
of particles for repulsive scalar potentials.

. Strong vector potentials (coupling constant exceeding / +
1/2) show the collapse of the particle to the center. The
corresponding wave function oscillates rapidly for large
particle momentum and becomes unnormalizable in the
usual way. Therefore, there exists no binding of particles
for such a electrostatic Coulomb potential. Nevertheless,
one can overcome this difficulty by considering a maxi-
mum allowed value of the particle momentum, an equiv-
alent procedure to regularize the Coulomb potential near
the origin in the position representation. On the other hand,
there is no particle falling for strong scalar potentials, which
can support bound states.
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