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Abstract

We analyze the peculiarities of the motional narrowing effect in disordered one-dimensional Frenkel chains with
off-diagonal disorder, induced by uncorrelated Gaussian fluctuations in the positions of the host units. A clear difference in
the scaling laws with respect to the magnitude of the positional disorder and the chain size is found, as compared to those for
uncorrelated diagonal disorder as well as for off-diagonal disorder modeled by uncorrelated randomness in the nearest-
neighbor couplings. The origin of such a difference is discussed in detail. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 71.35.Aa; 36.20.Kd; 78.30.Ly

1. Introduction

The concept of motional narrowing, earlier raised
w x Ž .by Knapp 1 for the on-site energy or diagonal

disorder, has been very fruitful in explaining many
optical phenomena in quasi-one-dimensional systems
like J aggregates of polymethine dyes and conju-

Ž w xgated polymers for a review, see Refs. 2–4 and
.references therein . This effect is manifested as a

decrease of the magnitude of the diagonal disorder as
soon as the states of individual molecules are collec-
tivized due to the intermolecular interaction and
form excitonic states. The decrease depends on
whether or not the disorder is small enough to be
regarded as a perturbation. In the perturbative case,
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the suppression factor is determined by the square
root of the whole number of molecules in an aggre-
gate, while in the nonperturbative case this number
should be substituted by the number of coherently

w xbound molecules 1 . A similar narrowing effect, but
different suppression factor, was recently reported

w xfor the case of dynamic disorder 5–7 .
w xIt was found in Ref. 8 that the numerically

simulated absorption spectrum of polysilane with an
uncorrelated Gaussian distribution of nearest-neigh-
bor couplings are similar to those for an uncorrelated

Ž w x.diagonal disorder see also 9 . In contrast, numeri-
cal simulations of off-diagonal disorder given by
Gaussian randomness in the molecular positions
w x2,10 found that the behavior of the optical observ-
ables was very different from that expected from

w xstandard motional narrowing arguments 1 .
The main goal of the present Letter is to uncover

the origin of such a difference. It will be shown that,
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in the case of configurational disorder, certain corre-
lations appear in the distribution of hopping inte-
grals, in spite of the fact that the distribution of the
molecular positions is uncorrelated. This finally re-
sults in a scaling law for the typical fluctuation of
the Frenkel Hamiltonian matrix with respect to the
magnitude of positional disorder and the number of
molecules different from that for uncorrelated diago-
nal disorder. As a consequence, the main features of
the exciton optical response are largely affected.

2. Description of the model

Consider a collection of N two-level molecules
forming a one-dimensional chain. For our present
purposes, we will neglect the static inhomogeneous
offset energy of the molecules imposed by the sur-

Ž .rounding host medium diagonal disorder . Under
this assumption, the effective Frenkel Hamiltonian
describing the system can be written in the form

< : ² <HHs J n m . 1Ž .Ý nm
nm

< :Here, the state vector n denotes the nth molecule
being excited and the site index n lies within the

Ž . Ž .symmetric domain y Ny1 r2FnF Ny1 r2
Ž .N assumed to be odd . J is the intersite interac-nm

tion, which will be considered to be of dipole origin,
< < 3so that J sJr nymqj yj , n/m, and Jnm n m nn

'0; j is the deviation of the nth molecule from itsn

regular position, which we suppose that it occurs
only along the directions toward the two adjacent
molecules. This restriction allows us to replace the
fluctuations of vector positions by scalars. We note
that, arguably, this assumption does not affect the
conclusions and is introduced only to simplify the
analytical treatment. The distribution function of jn

is chosen to be Gaussian,

1 j 2
n

P j s exp y , 2Ž . Ž .n 2ž /' 2ss 2p

with variance s 2.
To study the motional narrowing effect, one

Ž .should rewrite the Hamiltonian 1 in the excitonic
representation using the eigenfunctions of the unper-

Ž .turbed Hamiltonian with no disorder . For the sake
of simplicity, we assume periodic boundary condi-

tions. Then, Bloch waves are the proper eigenfunc-
Ž .tions of 1 in the absence of disorder:

1
i K n< : < :K s e n , 3Ž .Ý'N n

where Ks2p krN belongs to the first Brillouin
Ž Ž . Ž . .zone y Ny1 r2FkF Ny1 r2 .

Ž .In the K-representation, the Hamiltonian 1 reads

< : ² < X < : ² X <HHs E K K q D K K , 4aŽ .Ý ÝK K K
XK K , K

1
E s2 J cos Kn , 4bŽ . Ž .ÝK 3nn)0

1 X
iŽK nyK m.XD s d J e , 4cŽ .ÝK K nmN mn

1 1
d J sJ y , 4dŽ .nm 3 3ž /< < < <nymqj yj nymn m

where the scattering matrix D X is real due to theK K
Ž .symmetry of the summation region in 4c . Its diago-

nal part gives rise to exciton energy shift, yielding
inhomogeneous broadening of exciton levels for an
ensemble of chains. This effect appears to be the
main consequence of the presence of disorder if the
off-diagonal term can be regarded as a perturbation.
The typical fluctuation of D has a direct relationK K

with the inhomogeneous width of the corresponding
< :exciton state K .

For nonperturbative magnitudes of the disorder,
X Ž X .the off-diagonal elements D K/K mix theK K

exciton states, resulting in their localization on chain
segments of a typical size smaller than the chain
length and subsequently affecting the exciton optical
response. Recall that, for a perfect chain, only the
state with Ks0 is coupled to the light and carries
the entire exciton oscillator strength, which is then N
times larger than that for an isolated molecule. Being

Ž . Ž .mixed with other nonradiative states K/0 , the
radiative state loses a part of the oscillator strength
due to its spreading over to the nonradiative ones.
Thus, an effective number, usually called number of
coherently bound molecules N ) -N, replaces the
system size as the enhancement factor of the oscilla-

w xtor strength of the localized exciton states 1 . It
reflects the typical number of sites on which the
localized exciton wave functions have a significant
magnitude or, in other words, the number of
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molecules within a typical localization segment. Ac-
cordingly, the inhomogeneous width of the optical
exciton line will also be subjected to renormalization
w x1 . In the next section, we will formulate a condition
separating the perturbative and nonperturbative
ranges of disorder magnitudes in order to treat the
exciton optical response.

3. Motional narrowing effect

To gain insight into the magnitude of the typical
fluctuation of the scattering matrix D X , one shouldK K

calculate either its distribution function or its mo-
Ž .ments, using the distribution 2 of the positional

fluctuations. We chose the second procedure, so that
the magnitude of interest will be the mean square
deviation, defined as

22 2X X X² :s s D y D , 5² : Ž .K K K K K K

where brackets denote the average over the joint
Ž . Ž .probability distribution Ł P j , with P j of then n n

Ž .form 2 .
In what follows, we assume that the standard

deviation s is small. Accounting then for that

1
3< <nymqj yjn m

1 2 nym j yjŽ . Ž .n m
s 1q3 2< <nym nymŽ .

y3r22
j yjŽ .n m

q ,2nymŽ .
Ž .one can expand d J in Eq. 4d in Taylor series upnm

to fourth order with respect to
22 nym j yj q j yjŽ . Ž . Ž .n m n m

X ' ;nm 2nymŽ .
we are interested in the contribution to s X2 up toK K

the same order. The corresponding expressions for
D X and D X2 readK K K K

J eiŽK nyK
X
m.

3 15 2XD s y X q XŽÝK K nm nm2 83N < <nymmn

35 3153 4y X q X , 6aŽ ..nm nm16 128

2
X X

iŽK nyK m. yiŽK qyK p.J e e
2 XD s Ý ÝK K 3 3ž /N < < < <nym qypmn pq

= 9 45 2X X y X XŽ nm q p nm q p4 8

105 2253 2 2q X X q X X . 6bŽ ..nm q p nm q p16 64

Ž .Carrying out the average in Eqs. 6 , we will collect
all terms up to fourth order in s . The calculations
are rather tedious but straightforward, so we only
quote the final results:

2 4X X² :D sJd 12 JQ K s q180Q K s ,Ž . Ž .K K K K 5 7

7aŽ .
2 29 J s 2X2 )X² :D s P K qP KŽ . Ž .K K 5 5N

q144 J 2s 4Q2 K d XŽ .5 K K

360 J 2s 4
X)q P K qP KŽ . Ž .5 5N

= X)P K qP KŽ . Ž .7 7

2 472 J s 2Xq Q K qQ KŽ . Ž .5 5N

Xq2 Q 0 qQ KqK , 7bŽ . Ž . Ž .10 10

Ž . Ž .where the functions Q K and P K are given byn n

mei K m ei K m

P K s , Q K s , 8Ž . Ž . Ž .Ý Ýn nn n< < < <m mm m

and the term ms0 is excluded in the summations.
For the magnitude of interest, one obtains

2 2 2 49 J s 360 J s2X2 )Xs s P K qP K qŽ . Ž .K K 5 5N N

= X X) )P K qP K P K qP KŽ . Ž . Ž . Ž .5 5 7 7

2 472 J s 2Xq Q K qQ KŽ . Ž .5 5N

Xq2 Q 0 qQ KqK . 9Ž . Ž . Ž .10 10

We stress that only terms up to fourth order in s are
kept.

To treat the optical properties of linear aggre-
gates, the important wavenumbers K and K X are the

< < < < Xsmaller ones, namely K , K <1. In this long
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Ž . Ž .wavelength limit, the functions P K and Q Kn n

can be approximated by their values within the near-
Ž .est-neighbor framework, namely P K f2i K andn

Ž . Ž .Q K f2, accounting in the sums 8 only forn

Ž .leading terms with ms"1. Eq. 9 then reduces to

36 J 2
2X2 2 2Xs s KyK s 1q40sŽ . Ž .K K N

1728 J 2
4q s . 10Ž .

N

Now it can be clearly seen why one should keep the
terms up to fourth order in s . The first term, being
of second order with respect to s , is equal to zero

X wfor the diagonal elements of s note that it is trueK K
Ž .independently of the magnitude of K since P K qn

) Ž . x 2P K '0 . Thus, for s one getsn K K

1728 J 2
2 4s s s . 11Ž .K K N

This result differs from that for uncorrelated diago-
nal disorder, where the corresponding magnitude
scales as s 2rN, s 2 being the variance of the site

w xenergy distribution 1 . The same behavior appears as
well when one simulates off-diagonal disorder by
uncorrelated randomness in the nearest-neighbor

w x Ž 2hopping integrals 8,9 here, s stands for the
.variance of the corresponding distribution .

With respect to the off-diagonal elements of s X2 ,K K

we should note that, in spite of the fact that the first
term scales as s 2, it has an additional suppression

Ž X .2 y2factor proportional to KyK ;N , and thus it
may be smaller than the fourth order one. When the

Ž . X2 2 3first term in Eq. 10 dominates s As rN ,K K

while in the opposite case one has s X2 As 4rN.K K

Both results also differ from the scaling law s 2rN
w xfound for the other types of disorder 1,8,9 .

The origin of the difference discovered lies in that
the terms linear in j in the fluctuations of then

dipolar coupling of site n to the adjacent ones have
the same magnitude but opposite signs, thus appear-
ing to be correlated, notwithstanding the fact that the
fluctuations of molecular positions are completely

Žuncorrelated. Due to this feature, they almost or
X. Ž .exactly at KsK cancel each other in 4c when

summing over n in the long wavelength limit
Ž < < < X < . X 2K , K <1 , yielding D ,s .K K

As it was noted in the previous section, for pertur-
bative magnitudes of disorder, the main effect of
s X is the broadening of the exciton levels. TheK K

Ž .value of s given by Eq. 11 gives the half widthK K

of the K th exciton state and will serve for determin-
ing the latter provided that s X remains smallerK K

< X <than the corresponding energy differences E yE .K K

Since the minimum energy difference in the exciton
spectrum is between the state with Ks0 and the
next one with Ks2prN, the equality

X < X <s s E yE 12Ž .Ks2p r N , K s0 Ks2p r N K s0

determines a value of s which separates the ranges
of perturbative and nonperturbative magnitudes of

Ž . Ž .disorder. In 12 , E is given by Eq. 4b .K

4. Discussion of the numerical results

As it was already mentioned in the Introduction,
numerical simulations of optical properties of linear
molecular aggregates with off-diagonal disorder gen-
erated by Gaussian uncorrelated fluctuations in the
molecular positions yielded different behaviors of
the optical observables as compared to those for

w xdiagonal disorder 2,10 . In this section, it will be
w xshown that the peculiarities found in Refs. 2,10 can

be qualitatively explained from the viewpoint of the
Ž .modified motional narrowing formula 10 . In partic-

ular, we will focus on the dependence of the absorp-
tion band width s ) and the radiative rate enhance-
ment factor on the degree of disorder s . The radia-
tive rate enhancement factor is proportional to the
number of coherently bound molecules N ) , while
s ) can be estimated from s replacing N by N )

K K
w x )1,11 . Thus, the magic number N is, in fact, the
unique quantity determining the observables we are
interested in and, correspondingly, our main goal is
to obtain the dependence of N ) on s . To do that,
we will follow a simple rule earlier proposed in Ref.
w x Ž w x.12 see also 11 that works surprisingly well for
explaining the corresponding data for diagonal disor-

w xder 11,12 . This rule simply consists of applying the
Ž .formula 12 to the typical localization segment of

) Ž . )size N , i.e., replacing in Eq. 12 N by N . In our
estimates of N ) , we will keep only the second term

Ž .in Eq. 10 since, as will be shown later, it is the
major contribution for the parameters used in Refs.
w x2,10 .
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As a first step, let us take the exciton energy
spectrum in the nearest-neighbor approximation: EK

s2 Jcos Kf2 JyJK 2. After these simplifications,
we arrive at the following formula for the number of
coherently bound molecules

1r34p
) y4r3 y4r3N s s fs . 13Ž .ž /108

Estimating now the absorption band width s ) as
2s by replacing N by N ) , we findK K

) 8r3 8r3's s2 1728 Js f83Js . 14Ž .
Recall that for diagonal disorder the respective quan-

y2r3 w x 4r3 w xtities scale as s 11,12 and s 2,10–15 ,
whenever the nearest-neighbor approximation is
adopted. It is worth noting that the new scaling laws
Ž . Ž . Ž y2r313 and 14 follow from the latters s and

4r3. 2s simply replacing s by s , reflecting the fact
that in our case the effective disorder scales as s 2

w Ž .xinstead of s see Eq. 11 .
w xThe authors of Refs. 2,10 did not restrict them-

selves to the nearest-neighbor approximation but took
into account all dipolar couplings. Using the parame-
terization cs a, they found that their numerical data
for the factor of radiative rate enhancement and s )

were fitted by the sets cs0.20, asy1.64 and
cs425J, as2.84, respectively. The corresponding
exponents for the case of diagonal disorder were
found to be y0.74 and 1.34, respectively. Here, one
also observes approximately the two-times increase
of the exponents when passing from diagonal to
off-diagonal disorder. This feature unambiguously
shows that the effective degree of disorder in the last
case scales as s 2, what perfectly correlates with our

Ž .finding given by Eq. 11 .
w xComparison of the numerical fits of Refs. 2,10

Ž . Ž .with our results 13 and 14 , obtained under the
assumption of nearest-neighbor coupling, shows that
the numerical s-scaling of both quantities is repro-
duced reasonably well by the theoretical estimates,
better for the absorption band width and worse for
the number of coherently bound molecules. Similar
peculiarities are present in the case of diagonal disor-

Ž .der compare 4r3 with 1.34 and y2r3 with y0.74 .
w xAs it was firstly mentioned in Refs. 2,10 , including

all dipolar couplings affects largely the factor of
radiative rate enhancement, rising it by more than a

factor 2 as compared to that calculated in the near-
est-neighbor approximation. The explanation was

w xdone in Ref. 16 and was based on the exact exciton
energy spectrum close to the bottom of the band

32E sy2 Jj 3 qJK y ln K , 15Ž . Ž .Ž .K 2

Ž . ` y3where j 3 sÝ n s1.202. Notice that thens1

presence of a logarithmic term in this equation re-
sults in a larger energy level separation as compared
to the case of the nearest-neighbor model. Thus, a
smaller number of the exciton states will be effec-
tively mixed by disorder giving finally rise to an

) Ž .increase of N . Indeed, if we now use Eq. 15 for
finding N ) we then arrive at the equation

) ) 2'N N p
s . 16Ž .

) 2'ln N y ln 2p q3r2Ž . 6 3 s

For the nearest-neighbor model, one should substi-
Ž .tute the denominator in the left hand side of Eq. 16

by unity, getting then the previous expression for
) Ž .N , Eq. 13 . At a fixed magnitude of s , keeping

the denominator will increase the value of N ).
It should be stressed that, rigorously speaking,

Ž .from Eq. 16 does not follow a power-like behavior
of N ) against s . Therefore, we tried to fit the

w xnumerical data of Refs. 2,10 relative to the factor of
radiative rate enhancement and the absorption band
width using the following parameterization

) )'N N b
s , 17aŽ .

) 2ln N ya s

Js 2
)s sc . 17bŽ .

)'N

The fits were reached provided as0.004, bs
0.12 and cs148. Note that the numerical factor in
Ž . Ž .17b cs148 does not differ drastically from the

'theoretical value 48 3 f83.
Finally, we would like to show that for disorder in

the interval 0.025-s-0.08, used in the numerical
w x Ž .simulations 2,10 , the first term in Eq. 10 , ne-

glected by us when making estimates, is smaller than
the second one. Their ratio at K X s0 and Ks2prN

2Ž 2 . Ž 2 2 .is equal to p 1q40s r 12 N s . Substituting
here N by N ) fsy4r3, we indeed get for this ratio

2Ž 2 . 2r3a small magnitude p 1 q 40s s r12 < 1
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when s ranges within the above mentioned interval.
Thus, our assumption is self-consistent.

5. Conclusion

The motional narrowing effect in one-dimensional
Frenkel chains with off-diagonal disorder arising
from Gaussian fluctuations in the molecular posi-
tions is found to be different from that for diagonal
disorder and for off-diagonal disorder with uncorre-
lated randomness in the nearest-neighbor couplings.
Such distinction is due to the fact that the fluctua-
tions of the dipolar coupling of a given molecule to
the adjacent ones are correlated, even if the fluctua-
tions of the molecular positions are completely un-
correlated. Thus, this type of disorder cannot be
modeled by uncorrelated randomness in the nearest-
neighbor interactions. The estimates of scaling of the
optical observables with the degree of disorder based
on the new motional narrowing law are found to be
in qualitative agreement with those obtained previ-
ously in numerical simulations.
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