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Abstract

We present a theoretical analysis of low-temperature quenching of one-dimensional Frenkel excitons that are lo-

calized by moderate on-site (diagonal) uncorrelated disorder. Exciton diffusion is considered as an incoherent hopping

over localization segments and is probed by the exciton fluorescence quenching at point traps. The rate equation is used

to calculate the temperature dependence of the exciton quenching. The activation temperature of the diffusion is found

to be of the order of the width of the exciton absorption band. We demonstrate that the intra-segment scattering is

extremely important for the exciton diffusion. We discuss also experimental data on the fast exciton–exciton annihi-

lation in linear molecular aggregates at low temperatures.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Since the seminal works by Jelley [1] and

Scheibe [2], the concept of Frenkel excitons [3,4]
has been admitted for the explanation of the re-

markable optical properties of molecular aggre-

gates. The most surprising among them are the

appearance of a narrow and intense line in the red-

wing of the absorption spectra (J-band) and the

increase of the oscillator strength of the optical

transition at cryogenic temperatures by almost two

orders of magnitude [8–10]. During the nineties, a

significant progress in understanding of optical

dynamics in J-aggregates was achieved (for details
see the recent reviews [5–7] and references therein).

In the recent paper [11], the anomalously fast

low-temperature mobility of excitons in linear

molecular aggregates was reported. Scheblykin et

al. [11] studied the exciton–exciton annihilation in

aggregates of the triethylthiacarbocyanine salt of

3,30-bis(sulfopropyl)-5,50-dichloro-9-ethylthiacarbo-

cyanine (THIATS). The process of annihilation
was found to activate at low temperatures, T < 20

K (which is small compared to the width of the

J-band, 82 cm�1) and, what is more important, at

extremely low concentrations of excitons. This

finding implies that excitons can move at low

temperatures over large distances.
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A great deal of theoretical work has also been

devoted to the description of the optical properties

of J-aggregates [7]. Surprisingly, the simplest one-

dimensional (1D) tight-binding model with on-site

(diagonal) disorder provides a good basis for un-

derstanding complex optical dynamics in these
systems. The goal of the present Letter is to study

whether this model describes the experimentally

observed high mobility of 1D Frenkel excitons in

J-aggregates at low temperatures. To the best of

our knowledge, this problem has not been dis-

cussed in the literature yet. We use the effect of

quenching of the exciton fluorescence to probe the

exciton mobility. The term �low temperature� refers
to the temperatures lower or of the order of the

magnitude of the J-band width. Higher tempera-

tures are beyond the scope of this Letter.

The Letter is organized as follows. In Section 2,

we present our microscopic model. In Section 3,

the low-temperature exciton diffusion over mani-

folds of the localized states and quenching are

discussed qualitatively. The results of numerical
simulations of the exciton fluorescence quenching,

obtained on the basis of the rate equation ap-

proach, are the contents of Section 4. In Section 5,

we discuss the experimental data on the exciton–

exciton annihilation in THIATS aggregates. Sec-

tion 6 concludes the Letter with a summary of the

main results.

2. Description of the model

We model a J-aggregate by N (N � 1) optically

active two-level molecules forming a regular in

space 1D open chain. The corresponding Frenkel

exciton Hamiltonian reads [4] (for the sake of

simplicity only the nearest-neighbor interaction is
considered)

H ¼
XN
n¼1

Enjnihnj � J
XN�1

n¼1

jnð þ 1ihnj þ jnihnþ 1jÞ:

ð1Þ

Here En is the excitation energy of the nth mole-
cule, jni denotes the state vector of the nth excited

molecule. The energies En are assumed to be

Gaussian uncorrelated (for different sites) sto-

chastic variables distributed around the mean va-

lue x0 (which is set to zero without loosing

generality) with the standard deviation D. The

hopping integral, �J , is considered to be non-

random and negative (J > 0), which corresponds
to the case of J-aggregates (see, e.g., [8]). In this

case the states coupled to the light are those close

to the bottom of the exciton band. We consider

moderate disorder (D < J ) in what follows. This

implies that the exciton eigenstates um ðm ¼ 1;
2; . . . ;NÞ found from

XN
n¼1

Hnmumm ¼ emumn; Hnm ¼ hnjH jmi ð2Þ

are extended over relatively large segments of the

chain. However, the typical size of these localiza-

tion segments, N �, is small compared to the chain
length N .

Having been excited into an eigenstate m, an

exciton cannot hop to other eigenstates if coupling

to vibrations is not taken into account. This cou-

pling causes the incoherent hopping of excitons

from one eigenstate to another. We take the hop-

ping rate from the state m to the state l in the

following form (see, e.g., [12])

Wlm ¼ W0Sðjem � eljÞ

�
XN
n¼1

u2
mnu

2
nl

nðel � emÞ; el > em;

1þ nðem � elÞ; el < em:

(

ð3Þ

Here, the constant W0 characterizes the amplitude

of the hopping and nðeÞ ¼ ½expðe=T Þ � 1��1
is the

occupation number of the vibration mode with the
energy e (the Boltzmann constant is set to unity).

Due to the presence of the nðeÞ and 1þ nðeÞ fac-

tors, the rate Wlm meets the principle of detailed

balance: Wlm ¼ Wml exp½ðem � elÞ=T �. Thus, in the

absence of decay channels, the eventual exciton

distribution is the Boltzmann equilibrium distri-

bution. The sum over sites in (3) represents the

overlap integral of exciton probabilities for the
states l and m. The spectral factor Sðjem � eljÞ de-
pends strongly on the particular details of the ex-

citon–phonon coupling as well as on the density of

states of the medium into which the aggregate is

embedded. The study of these details is beyond the
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scope of the present Letter. We use the linear form

Sðjem � eljÞ ¼ jem � elj=J of this factor, which ac-

counts for the reduction of the hopping in the

long-wave acoustic limit [14]. The hopping rate in

the form of Eq. (3) was used in [13,14] to suc-
cessfully describe the 1D exciton thermalization.

The mobility of excitons can be probed by the

quenching of the exciton fluorescence, which is due

to point traps. The quenching rate of the exciton

state m is assumed to be proportional to the

probability of finding the exciton at trap sites

Cm ¼ C
XNq

i¼1

jumij
2
; ð4Þ

where C is the amplitude of exciton quenching and

the sum runs over positions of the Nq traps. We

assume also that point traps do not change neither

the disorder configuration nor the exciton eigen-

functions umi.
We describe the process of the exciton trapping

by means of the rate equation

_PPm ¼ �ðcm þ CmÞPm þ
XN
l¼1

ðWmlPl � WlmPmÞ; ð5Þ

where Pm is the population of the mth exciton ei-

genstate and the dot denotes the time derivative,
cm ¼ cð

PN
n¼1 umnÞ

2
is the spontaneous emission rate

of the mth exciton state, while c is that of a

monomer. The initial total population is normal-

ized to unity:
P

m Pmð0Þ ¼ 1.

The temperature dependence of the exciton

quenching is calculated as follows. We admit the

definition of the exciton fluorescence decay time s
as the total population integrated over time (see,
for instance, [15]). In the presence of disorder, it

has to be averaged over disorder configurations

and trap positions. Then, the equation for s reads

s ¼
Z 1

0

dt
Z

dE
XN
m¼1

dðE
*

� EmÞPmðtÞ
+

¼
Z 1

0

dt
XN
m¼1

PmðtÞ
* +

; ð6Þ

where angle brackets denote averaging. The decay

time is calculated for aggregates with traps (denote

it as s) and without traps (denote it as s0) for the

same set of disorder configurations. Recall that,

according our assumption, traps do not change the

exciton eigenfunctions. The quenching rate is then

defined as

Wq ¼
1

s
� 1

s0
: ð7Þ

This quantity carries information about the diffu-

sion rate and is the object of our analysis.

The definition of the decay rate as the inte-

grated total population allows for considerable

simplification of the calculation procedure. We

write the solution of Eq. (5) in a formal matrix
form

Pm ¼
XN
l¼1

e�R̂Rt
� �

ml
Plð0Þ; ð8Þ

where

Rml ¼ cm

 
þ Cm þ

XN
l¼1

Wlm

!
dlm � Wml: ð9Þ

After the substitution of (8) into Eq. (6) and in-

tegration over time, s can be expressed in terms of

the R̂R-matrix

s ¼
XN
m;l¼1

R̂R�1
� �

ml
Plð0Þ

* +
: ð10Þ

Clearly, obtaining Wq only requires the calculation

of the inverse matrix R̂R�1 for each realization of

disorder rather than the tedious calculation of the

kinetics. The inverse matrix is to be found twice:

for an aggregate with and without traps. Note that

the decay time in the absence of traps, s0, also

depends on temperature (see, e.g., [14]).

3. Qualitative picture

At low temperatures, excitons occupy states at

the bottom of the exciton band. Therefore, this

part of the exciton energy spectrum determines the

low-temperature exciton transport. Below, we re-
call briefly the concept of local (hidden) energy

structure of localized 1D excitons [16–19], which

was proved to exist in the vicinity of the band

bottom [20,21]. According to this concept, the
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low-energy one-exciton eigenfunctions obtained

for a fixed realization of the disorder can be

grouped into local manifolds of two (or sometimes

more) states that are localized at the same chain

segment of typical length N � (in units of the lattice

constant) which scales with disorder as follows [20]

N � ¼ 8:71
D
J

� ��0:67

: ð11Þ

It turns out that the structure of the exciton states

in each local manifold is very similar to the

structure of the lower states of a regular (non-

disordered) chain of length N �. In particular, the
lowest state in a manifold has a wave function

without nodes within its localization segment.

Such a state can be interpreted as the local ground

state of the segment. It carries large oscillator

strength, approximately N � times larger than that

of a monomer, so that the typical spontaneous

emission rate is c� ¼ cN �. The second state in the

manifold has a node within the localization seg-
ment and looks like the first local excited state of

the segment (see Fig. 1). Its oscillator strength is

typically an order of magnitude smaller than that

of the local ground state. It is important to note

that, contrary to the eigenstates from the same

manifold, the states from different manifolds

overlap weakly. The energies of local ground states

are distributed within the interval r11 that is larger

than the typical energy spacing e12 between the
levels in a local manifold [20]:

r11 ¼ 0:67J
D
J

� �1:33

; ð12aÞ

e12 ¼ 0:40J
D
J

� �1:36

: ð12bÞ

For this reason, the local energy structure cannot

be seen either in the density of states (DOS) or in

the linear absorption spectra. However, it deter-

mines the non-linear optical response of the system

[17,22–24].

Higher states are more extended than the local

states as the localization length increases with en-

ergy. Therefore, the higher states cannot be in-
cluded into any particular local manifold: their

wave functions cover more than one N �-molecule

segments (see the states filled with gray color in

Fig. 1). The typical energy spacing between these

higher states and the covered local states is of the

order of e12. Thus, the energy e12 is expected to be

the activation energy for the exciton diffusion.

It is clear from the above arguments that the
energy structure of the lower exciton states is of

importance for understanding the features of the

low-temperature exciton transport. On the basis of

the local energy structure concept, two types of

exciton hopping over the local states can be dis-

tinguished: intra-segment hopping and inter-seg-

ment one, involving the states of the same local

manifold and of different manifolds, respectively.
As the states from different local manifolds over-

lap weakly (see Fig. 1), only inter-segment hops to

adjacent segments are of importance. The disorder

scaling of the overlap integrals Ilm ¼
P

n u2
lnu

2
mn for

the local states of the same and adjacent segments

was obtained in [21]:

I12 ¼ 0:14
D
J

� �0:70

; ð13aÞ

Im01 ¼ Im02 � 0:0025
D
J

� �0:75

: ð13bÞ

Fig. 1. The energy structure of the exciton levels in the vicinity

of the bottom of the exciton band. The states are obtained by

diagonalization of the Hamiltonian (1) for a linear chain of 300

sites and the disorder magnitude D ¼ 0:1J . The baseline of each
state represents its energy in units of e21. The origin of the ex-

citon energy is set to the lowest energy for the realization. The

wave functions are in arbitrary units. It is clearly seen that the

lower states can be grouped into local manifolds. The states

within each such manifold are localized at the same segment;

they overlap well with each other and overlap much weaker

with the states of other manifolds.
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Hereafter, the indices 1 and 2 label the local states

of the same segment while those with primes label

the local states of a different adjacent segment. As

follows from Eqs. (13a) and (13b), the intra-seg-

ment overlap integral is typically more than an
order of magnitude larger than the inter-segment

one. The intra-segment hops do not result in the

spatial displacement of excitons; they correspond

to the intra-segment relaxation. Only the inter-

segment hopping gives rise to the spatial motion of

excitons. Nevertheless, we show that both types of

hops are important for understanding the features

of the low-temperature exciton transport.
The overlap integrals between the local states of

a segment and the higher states which are extended

over this segment are of the order of I12. This fact
implies that even at T < e12, the hops via these

higher states can be more efficient than the inter-

segment hops over the local states.

3.1. Zero temperature

At zero temperature an exciton can hop only

down to lower states. Let us assume that it is in the

local excited state 2. Then it can only hop to the

local ground state of the same segment 1 or to a

lower state m0 localized at an adjacent segment (see

Fig. 2, T ¼ 0). Because the intra-segment hopping

is faster than the inter-segment one, first, the ex-

citon hops down to the local ground state 1 with

the typical energy loss e12 (e12 being the mean en-

ergy spacing in the local discrete energy structure,

see Fig. 2, T ¼ 0). From the local ground state, the
exciton can hop only to a state m0 of an adjacent

segment provided that em0 < e1 and the spontane-

ous emission rate of the local ground state c1 is

small compared to the intra-segment hopping rate

Wm01jT¼0. Hereafter, such a relationship between

these rates is referred to as the limit of fast diffu-

sion; only this limit is considered in this work. The

typical energy loss during such sideways hop is of
the order of the width of the local ground states

distribution, r11 (r11 is about the J-band width).

Thus, already after one such sideways hop the

exciton resides in a state in the tail of the DOS.

Therefore, the number of states with even lower

energies decreases dramatically, which results in a

strong increase in the typical distance to those

states and in a suppression of the probability to
hop further sideways. Then the exciton either re-

laxes to a lower state of the same segment (if there

is one) or decays spontaneously, i.e., this type of

the spatio-energetic diffusion (towards lower en-

ergies) stops very quickly. Note that this diffusion

Fig. 2. Schematic view of exciton hoppings at zero and non-zero temperatures. The indices 1 and 2 label the local ground and the first

local excited states of the same segment. The m0 state is localized at an adjacent segment. The index 3 labels a higher state which overlaps

well with the states of two adjacent segments. Hops are shown by the straight arrows; the arrow thickness represents the hopping rate

magnitude. The spontaneous emission rate c1 is depicted by thin wavy arrows.
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would manifest itself in the red shift of the exciton

emission spectrum relative to the absorption

spectrum. The experimental data show that such

red shift is either absent [8,9] or is smaller than the

J-band width [11,25]. These experimental findings

unambiguously indicate that at low temperatures,
T � r11, excitons make few hops before they

decay due to the spontaneous emission, as was

argued in [26–28]. Consequently, the zero-tem-

perature exciton quenching is expected to be weak

provided the concentration of quenchers is low,

the case we are interested in.

3.2. Non-zero temperature

At non-zero temperatures (0 < T K e12), an

exciton can also hop up in energy. Consider an

exciton in one of the lower states in the tail of the

DOS, e.g., in the local ground state 1 (see Fig. 2,

T > 0). For the reasons discussed above, first, the

exciton hops up to the first local excited state 2 of

the same segment, provided the hopping rate for
the considered temperature is larger than the

spontaneous emission rate c1 of the initial state 1.

During this process the exciton typically gains the

energy e12. As e12 is of the order of r11 [20], al-

ready after the first hop up the exciton leaves the

tail of the DOS and, hence, it is likely to have a

lower state m0 localized at an adjacent segment. A

hop down to this state with loss in energy is
favorable and results in the spatial displace-

ment of the exciton, i.e., in the exciton diffu-

sion. We stress that although only sideways hops

result in the spatial displacement of the exciton, it

is the initial hop up from the local ground state 1

to the local excited state 2 that triggers the dif-

fusion.

Another way for the exciton to hop sideways to
the state m0 is via the higher state 3 that overlaps

well with both states 2 and m0 (see Fig. 2, T > 0).

As it has been mentioned, such hops compete with

the sideways hops over the local states; although

the hop up to the state 3 is thermally unfavorably,

the overlap integral for this hop, I31, is large

compared to that for an inter-segment hop, Im01.
We show later that this channel of diffusion be-
comes efficient indeed even at relatively low tem-

perature.

4. Numerical results and discussion

In this section, we discuss the results of nu-

merical calculation of the quenching rate Wq. In

this Letter, we consider the initial condition where
the leftmost local ground state is excited while a

single trap is located in the center of the localiza-

tion segment of the rightmost local ground state.

In this case, the exciton quenching is most affected

by diffusion, as the created exciton has to travel

over almost the whole chain to be quenched. Thus,

the exciton quenching at low concentration of

traps can be studied. The quenching rate was cal-
culated as described in Section 2 for the parameter

set corresponding to the limit of fast diffusion and

effective quenching (the later limit is defined be-

low). In all calculations we set W0 ¼ 1 and choose

the parameter c so that the typical inter-segment

down-hopping rate W101jT¼0 � W0ðr11=JÞIm01 is large
compared to the typical spontaneous emission rate

of a local ground state c� (the limit of fast diffu-
sion). C is chosen so that the typical quenching

rate C� � CN � is greater than the typical intra-

segment down-hopping rate W12jT¼0 � W0ðe12=JÞI12
(the limit of effective quenching). This ensures that

once an exciton hops to a local state of the segment

with the trap, it is quenched almost instanta-

neously. More specifically, for each magnitude of

the disorder W101jT¼0 ¼ 10c� and C� ¼ 10W12jT¼0:
c ¼ 5� 10�8 and C ¼ 0:2 for D ¼ 0:1J ; c ¼ 4�
10�7 and C ¼ 0:5 for D ¼ 0:2J ; c ¼ 1� 10�6 and

C ¼ 0:9 for D ¼ 0:3J . Calculations were per-

formed for N ¼ 1000 and 100 realizations of the

disorder.

Fig. 3 shows the temperature dependence of the

quenching rate Wq for the parameter sets specified

above. In the plot, the quenching rate is given in
units of the typical exciton radiative rate c� ¼ cN �.

The temperature is given in units of the mean en-

ergy spacing in the local energy structure e12. Note

that both N � and e12 depend on D as described by

(11) and (12b). Fig. 3 demonstrates very clearly

that for all considered values of D at temperatures

lower than e12 the quenching rate is vanishing. This
indicates that at these temperatures the exciton
cannot reach the quencher during its lifetime and

decays due to the spontaneous emission. On the

contrary, just after the temperature exceeds
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approximately e12 the quenching becomes notice-

able: the exciton partly diffuses to the trap where it

decays mostly due to quenching. Specifically,

temperature of the order of 2e12 are required for

the quenching to become as effective as the spon-
taneous emission: Wq � c� ¼ cN �.

It is useful to estimate the effective sideways

hopping rate W , which is required to reach the

quenching level Wq � c�. To do this, one can

consider the sequence of localization segments as

an effective chain of �sites�, the typical number of

which is equal to the number of segments, Ns ¼
N=N �; the mean spacing between these �sites� is N �.
The exciton diffusion coefficient is then estimated

as D � WN �2 (the lattice constant is set to unity).

For the quenching to be as effective as the spon-

taneous decay, the exciton has to reach the

quencher (located on the opposite side of the

chain) during the lifetime c�
�1
, i.e., it has to diffuse

over the distance N during this time. Equating the

diffusion length
ffiffiffiffiffiffiffiffiffiffi
D=c�

p
to N , we obtain the esti-

mate for the required diffusion rate W : W �

c�ðN=N �Þ2. The localization length N � is equal to

38, 25 and 18 for D¼ 0.1, 0.2 and 0.3, respectively.

Thus, the corresponding diffusion rates W are es-

timated as 600c�, 1600c� and 2500c�. These values

are about of two orders of magnitude larger than

the rates of sideways hops over the local states,
taken to be 10c� in all calculations. This indicates

that when the quenching rate becomes comparable

to the spontaneous emission rate, the exciton does

not hop between the local states of adjacent seg-

ments with the typical rate (Wm01 � 10c�). It rather
hops via the higher states that extend over more

than one N �-molecule segments (see the discussion

in Section 3). The hopping rate via such states for
T � 2e12 is of the order of W12 which is about two

orders of magnitude larger than Wm01.

5. Analyzing the fast exciton–exciton annihilation

In [11] the anomalously fast low-temperature

diffusion of Frenkel excitons in linear aggregates
of THIATS molecules was reported. The unit cell

in these aggregates contains two THIATS mole-

cules. Because of this fact, the absorption spectra

of THIATS aggregates reveal two bands, so-called

H-band and J-band [29]. The former, intensive and

widely broadened (the width being about 1000

cm�1), results from the optical transition from the

ground state of the aggregate to the top of the
exciton band. The latter, much less intensive and

narrower (the width being 82 cm�1), is due to the

optical transition from the ground state to the

bottom of the exciton band. Contrary to the H-

band, the J-band is visible in exciton fluorescence

spectra.

Scheblykin et al. [11] studied the exciton–exci-

ton annihilation in THIATS aggregates by mea-
suring the exciton fluorescence decay after

excitation into the centre of the exciton band (the

whole width being about 3000 cm�1). It was found

that this effect is pronounced even at T ¼ 5 K (3.5

cm�1) and at a very low intensity of excitation. In

order to explain the experimental data, the authors

assumed that excitons travel over about 104 dye

molecules during their lifetime to meet each other
and annihilate. They found also that the activation

energy for the exciton diffusion was 15 K (10.5

Fig. 3. Temperature dependence of the quenching rate Wq cal-

culated for a linear chain length N ¼ 1000 and different mag-

nitudes of the disorder D: dashed line, D ¼ 0:1J ; dotted line,

D ¼ 0:2J ; solid line, D ¼ 0:3J . The rate equation parameters

were chosen so that for each magnitude of disorder

W101jT¼0 ¼ 10c� and C� ¼ 10W12jT¼0: c ¼ 5� 10�8 and C ¼ 0:2

for D ¼ 0:1J ; c ¼ 4� 10�7 and C ¼ 0:5 for D ¼ 0:2J ;
c ¼ 1� 10�6 and C ¼ 0:9 for D ¼ 0:3J . The averaging is per-

formed over 100 disorder realizations. For each realization of

the disorder, the leftmost local ground state is excited, while the

only trap is located in the center of the localization segment of

the rightmost local ground state.
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cm�1) and considered this energy to be the typical

energy difference between the states of adjacent

localization segments.

The fact that the exciton–exciton annihilation is

very sensitive to temperature indicates that this

process starts after the exciton intra-band relaxa-
tion to the states forming the J-band. Therefore,

the annihilation process involves only the J-band

states and the difference in band structure between

THIATS aggregates and J-aggregates is probably

unimportant. Furthermore, the exciton–exciton

annihilation can be treated similarly to the exciton

quenching: one of the two excitons can be con-

sidered as an immobile trap for the other while the
other diffuses twice as fast. Thus, our model is

applicable to analyzing the exciton–exciton anni-

hilation in THIATS aggregates.

As reported in [11], the fluorescence spectrum of

THIATS aggregates is narrowed by approximately

26 cm�1 and experiences a red shift of 23 cm�1 as

compared to the J-band. These findings indicate

that the excitons make sideways hops during their
lifetime, i.e., the rate of sideways hops over local

states is larger than the exciton spontaneous emis-

sion rate. This indicates that the conditions for the

exciton diffusion in THIATS aggregates are similar

to those studied in the present Letter (the limit of

fast diffusion). On the basis of this analogy, the

activation energy for the exciton diffusion is ex-

pected to be of the order of 82 cm�1 rather than the
reported 10.5 cm�1. The typical size of localization

segment in THIATS aggregates is N � ¼ 30 [29]. In

the model we are dealing with, this corresponds to

the disordermagnitudeD ¼ 0:2J . As it follows from

our numerical data, the exciton quenching is van-

ishingly small for temperatures T � ð10:5=82Þe12.
Thus, the model of the temperature-activated hop-

ping over localization segments, proposed in [11]
for the explanation of fast exciton diffusion at low

temperature, is questionable. Understanding the

observed fast low-temperature exciton–exciton an-

nihilation still remains an open question.

6. Summary

We analyzed theoretically the features of the

low-temperature diffusion of 1D Frenkel excitons

localized by a moderate diagonal disorder. In this

case the low-energy exciton wave functions are

extended over relatively large segments of typical

size N � (1 � N � � N ). We considered the exciton

motion as incoherent hops over localized states.

The exciton diffusion was probed by the exciton
quenching by a trap that was located at one end of

the chain while the exciton is initially located at the

other end of the chain. For this initial condition,

the quenching is most affected by the diffusion as

the exciton has to travel over almost the whole

chain to be quenched. Exciton quenching was de-

scribed by the rate equation. Numerical simula-

tions confirm our qualitative finding that exciton
diffusion is activated at the temperature that is

approximately equal to the mean spacing in the

local discrete energy structure. This temperature is

of the order of the J-band width. According to the

general belief, at such temperatures the exciton

diffuses over N �-molecule localization segments.

We show, however, that it diffuses mostly over

higher states which extend over few such segments.
The latter provide the natural energy scale and

determine the activation energy of the diffusion.

We demonstrate therefore that the intra-segment

scattering is extremely important for the diffusion.
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