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Abstract.  The selution of the one-dimensional relativistic
Klein—Gordon equation in the momentum representation
for a particle in the H atomn potential is presented. The
eigenfunctions and the energy levels of bound states arc
found. In the non-relativistic limit, the energy of the
particic is given by the Balmer formula. The
eigenfunctions are found to be finite sums over poles
along the imaginary axis in the complex plane.

1. Introduction

Physics in onc dimension (1D) may be used as a guide
to more complex three-dimensional {3D) problems.
Frequently 10 quantum mechanical problems allow
analytical solutions, while the corresponding 3D
equations have to be solved by numerical methods, as
occurs for instance in the Kronig-Penney and Ising
models. One of the more relevant 1D problerns is that
of the hydrogen atom (Loudon 1959} because of its
numerous physical applications, i.¢. impurities and
excitons in semiconductors, quantum well structures
and hydrogen atoms in strong magnetic fields. Never-
theless this problem, that could be thought of as easy,
has become polemic duc to the possible cxistence of
degenerate levels and of a ground state with an infinite
binding emergy (Moss 1987, Hammer and Weber
1988).

Recently, it has been proved (Nufez Yepes er al
1987) that the ground state energy is finite and it is not
possible to find states with definitc parily, in spite of
the symmetry of the potential — 1/|x|. They claim that
the discontinuity at x — 0 plays the role of an infinite
barrier, which breaks the space into two independent
regions. Thus, an clectron moving in the right {or left)
region will remain there indefinitely.

The 1D hydrogen atom has also been studicd using
the relativistic treatment (Spector and Lec 1985, Moss
1987) with the Klein~Gordon equation in the position

Resumen.  Se resuelve la ecuacion de Klein-Gordon
monodimensional para una particula relativista
meviéndose en ¢l potencial del atomd de hidrogeno. Se
han encontrado las autofunciones y los niveles de energia
de los estados ligados. En el limite no refativista, la
energia de la particula viene dada mediante la férmula de
Balmer. Las autofunciones se pueden expresar como
surnas finitas de polos, que se encuentran en el eje
imaginario del plano complejo.

representation. Spector and Lee have found states
with definite parity and a ground-state energy of the
same order as the particle rest mass energy; however,
Moss has shown that the corresponding solution is
unacceptable. On the other hand, Lapidus (1983b)
has used the Dirac equation with a delta-function
potential, and obtained a finite energy for the only
bound state. Nevertheless, the relativistic treatment of
the delta potential exhibits some ambiguities, as
Calkin ez al {1987) have pointed out in a recent work.
Moreaver, no bound state solutions of the ip Dirac
cquation for the Coulomb potential are found {Moss
1987, Dominguez-Adame 1990).

The momentum tepresentation can be very useful
in guantum mechanics, although it has been used
almost exclusively in scattering problems. The 3p non-
relativistic Coulomb problem was originally solved in
the momentum representation by Podolsky and Paul-
ing (1929), taking the Fourier transform of the eigen-
functions in thc position rcpresentation. Six years
later, Fock (1935} found the solution by solving the
Schrddinger equation directly in momentum repre-
sentation. In both cases, the momentum eigenfunc-
tions were expressed in terms of Gegenbauer poly-
nomtals. The Dirac cquation was also solved in
momentum representation for the sp hydrogen atom
(Rubinowicz 1948, Lévy 1950). Recently, Lombardy
has rcviewed and discussed this problem in both
non-relativistic (Lombardy 1980) and relativistic

0143-0807/30/030143 + 03 $03.50 (§) 1990 {OF Publishing Lid & The Europear Physical Society



150 F Dominguez-Adame

{Lombardy 1983) cascs. He has found that the radial
functions are finite sums over poles in the complex
planc.

The non-relativistic 1D hydrogen atom was first
studied in the momentum representation by Lapidius
(1983a), assuming a & inleraction potential. Lately,
the potential — 1/|x| has been analysed in an elegant
way by Nafiez Yepes et a/ (1987), solving the integral
Schrddinger equation in momentum representation.
As far as we know the analogous relativistic problem
remains open in the literature.

In this paper the cigenfunctions of a relativistic
particle in the potential — 1/x| arc found, solving the
Klein-Gordon equation direcily in the momentum
represcntation. The particle energy is the samce as that
reporied by Moss (1987). Also we calculate the non-
relativistic limil in agreement with the results from
Nuniez Yepes et al.

2. Kiein—Gordon equation in momentum
representation

Let us consider a relalivistic particle without spin,
moving under the action of the potential

F(x) = — Ze* x| 0y
so the particle satisfies the 1D Klein-Gordon equation
(Schiff 1965)

d?(x) 2, 2EZn L 72 _
e +{—A+ e I}—ﬁ?w}w(x)—ﬂ- 2)

The parameters appt:arin% in this equation are a =
efhe, A= (me/h)]1 — )" and ¢ = Efmc. We are
looking for the bound states, thus we have the con-
dition ¢ < 1, and then 4 is a real parameter.

Solutions of equation (2) in momentum representa-
tion are given by the Fourier transform

9s(p) = @)™ " dxexp(=ipx/). (x)

where the upper (lower) sign refers to x > 0 (x < 0),
Le. . () vanishes for x < 0 (x = 0). This is consis-
_lent with the fact mentioned above that the left and
the right regions are independent. To determine the
Klein—Gordon equation governing ¢, (p), we make
the following operator replacements,
1 irrp s
P I

X
and

i Lep o
ERE I
so equation (2) becomes

(PR + D)o (p) + QiZaEWD [ dp'e,(p)

+ @[ a1 dpeup=0. @

For the sake of simplicity, we introduce the notation
q = puay[Zeh, @y = h*fme’ being the Bohr radius, and
v = Zgfla,. By differentiating twice with respect to
the new variable ¢, we gel the following second-order
differential equation

d’ .d
12y 97 2 a
forvirsraeens

+V(2+ zzal)} @, (g) =0. ey

In order to find the regular solutions of this equation,
it is convenient to replace g by the variable & =
2/(1 & ivg) so that

d2
2
{(f - DEL

e w:)«:gdg

—(2+zfac2)}qo+(f) — 0,

Using the series solution

o

0 (O =3 !

k=0
where s is a parameter to be determined, we obtain the
following recurrence relation

a = [(k+3)(k+5—v— Dk(k+ 25 — D]ay_,

choosing 5 = 4 + (3 — Z?2*)"*. As Moss has pointed
out, the corresponding solution for the smaller value
of 5 is unacceptable, so we must take the upper sign.
The general expression for the expansion coefficients
is found by successive use of the recurrence relation

s+ (s
“":(Hk!)fz(z)k P, )

where the Pochhammer’s symbol is defined (a), = |
and (@), =Tla + k)T(@y =ala+1)...(a+k — 1).

The quantum condition v — s = n, being a non-
negative integer, arises from the requirement that
@.(g) — 0 as p — 0. Thus remembering (he relation
between v and ¢, we obtain the energy of the particle
as

a, 0

E, = me[l + Z*¥(n + 5] '*
n=0,1.... (6)

The eigenfunctions of the relativistic particle in
momentum representation are

_ (—n)(s + 1), 2 )““*'
where 4, are the normalisation constants. Similar
expressions are found for the relativistic 3p hydrogen
atom in momentum represcntation by Lombardi
(1983) with the aid of the Dirac cquation.

3. Non-relativistic limit

It is interesting to look for the limiting case ¢ —+ o of
our previous results, so that 22 < 1. For this situa-
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tion, we can set s=1 and v=n+1=1,2.. ..
Taking into account the well known result
(Abramowitz and Siegun 1964)

o (L =)
k ¥l
2 =(l —12)
kgn k!
and the expression (7), the non-relativistic eigenfunc-
tions become

A, 1 Fivy )“
- = - . =12..
R e s I
which is the solution obtained by Nufiez Yepes et af
(1987). In this casc, the cnergy of the particle can be
found by e¢xpanding cquation (6) to first order in
72, and then we get the usual Balmer formula

E—md ~ —mc Z2a 2y yv=12....

This result is in contradiction to that of Speclor and
Lee {1985) who find a ground-state energy of the
order of the rest mass energy of the particle. However,
our cxpression (6) for the particle cnergy, with
s=1+ (4 —Z22")'?, gives the correct non-relativis-
tic limit.

4. Conclusions

The relativistic 1D hydrogen atom can be solved
directly in momentum representation, by means of
the Klein-Gordon equation. The ground-state energy
is found to bc finite and is given by E = mc® —
Imc’ Z2o" + O(x*). The Schrodinger cquation results
are recovered in the non-relativistic limit. The ¢igen-
functions in momentum representation have poles
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+ime(1 — &7)'? along the imaginary axis, and can be
expressed as sums over poles up Lo ordern 4+ s+ 1in
the complex plane.
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