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Abstract

Electrons moving in a tilted periodic potential perform a periodic motion,
known as Bloch oscillation. Within a semiclassical description, the crystal
momentum increases linearly with time until it reaches the boundary of the first
Brillouin zone in reciprocal space. Then, it reenters the first Brillouin zone by
the opposite edge. This periodic motion in reciprocal space is accompanied by
an oscillation in real space. The angular frequency of the oscillations and their
amplitude can be calculated within the semiclassical framework. Nevertheless,
the semiclassical approach cannot explain the rich phenomenology of the Bloch
oscillations, such as the breathing of the electronic wave packet. We present a
simple description of the Bloch oscillations of tightly bound electrons in biased
lattices at a basic level and calculate exactly the wavefunction as a function of
time.

1. Introduction

The high-frequency response of solids under electromagnetic fields is to a large extent
determined by the dynamics of the electrons, especially in metals and semiconductors. Thus,
one of the main goals in introductory courses of solid state physics is to understand the details
of the electron dynamics in a periodic potential subjected to external fields. At a quantum
level, the analysis is difficult even within the one-electron approximation. For this reason,
most introductory textbooks (e.g. [1]) rely on the semiclassical approach, earlier introduced
by Bloch and Zener in this context [2, 3].

The semiclassical equation of motion for the crystal momentum k predicts that electrons
in periodic potentials subjected to an applied electric field may undergo coherent oscillations
[2, 3]. They perform a periodic motion, in real and in k-space, known as Bloch oscillations
(BOs) [1, 4]. From semiclassical arguments, it can be shown that BOs are characterized by
a time period tp = 2mwh/efa and an amplitude Ap = W/2e&, where —e is the electron
charge, £ is the magnitude of the applied electric field, a denotes the spatial period of the
potential and W stands for the band width in the unbiased lattice. BOs were observed for the
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first time as coherent oscillations of electronic wave packets in semiconductor superlattices
[5, 6]. These oscillations are related to the wave dynamics of particles, and therefore they
can be observed in almost any coherent motion of waves in tilted periodic potentials. Thus,
they were later detected as a periodic motion of ensembles of ultracold atoms [7, 8] and
Bose-Einstein condensates [9, 10] in tilted optical lattices. BOs also have their counterpart in
optics [11] and acoustics [12].

The aim of this work is to fill the gap between the semiclassical approach and the fully
quantum mechanical description based on the Schrédinger equation in the three-dimensional
space. We consider a single electron within the tight-binding approximation moving in a
one-dimensional (1D) lattice subjected to a uniform electric field. Therefore, we will be
dealing with a discrete equation for the amplitude of the wavefunction at every atom instead
of a differential equation for the wavefunction itself.

2. Wannier-Stark ladder

We consider the electron states in an infinite 1D lattice under a uniform electric field £ applied
along the lattice. Within the one-band tight-binding approximation, the amplitude of the
wavefunction at lattice sites satisfies the following equation [13]:

EY, = eEanyry, — J Y1 — J 1, (D
where J is the hopping parameter. The energy of the atomic orbitals is set to zero without loss
of generality. To simplify the notation, we introduce the dimensionless energy € = E/J and
electric field F = e£a/J. Therefore, equation (1) can be rewritten as

ewn = ann - (wnﬂ + wnfl)' (2)
Recalling the recurrence relation of the Bessel functions (A.1), we can write the solution in
the infinite lattice as

Y = J, 2/ F), k=0,+1,42,..., 3)
where the superscript (k) labels the eigenstate. According to (A.2), these eigenstates are

already normalized. From equations (3) and (A.1), we also find that €, = Fk and the
corresponding eigenenergy is

E; = efak. 4)
Therefore, the energy levels are equally spaced, e£a being the energy difference between
them. This energy spectrum is known as the Wannier—Stark ladder. The Wannier—Stark ladder
is also characterized by the spatial localization of the eigenstates. The degree of localization
can be estimated from the second moment of the eigenstate ¥ X):

2
(Ax) =a Y n’ly, > — (me)

2 2612

where the sums S\”(2/F) = 3", ntJ? ,(2/F) are calculated in the appendix. Thus, the width
is finite and decreases on increasing the electric field as Ax = /2 J /e€.

As an example, figure 1 shows the eigenfunction amplitude (3) as a function of the site
index when k = 0 and two values of the dimensionless electric field, namely F = 0.1 and
F = 1.0. It becomes apparent that the spatial extent of the eigenstate is smaller on increasing
the magnitude of the electric field. It is important to stress that other eigenstates are obtained
by integer translations over the 1D lattice of those shown in figure 1, while their energies are
quantized according to (4).

=a’SP(2/F) - a*[S" 2/ F)]
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Figure 1. Eigenfunction amplitude as a function of the site index when k = 0 and (a) F = 0.1 and
(b) F = 1.0. Solid lines are a guide to the eye.

3. Bloch oscillations

Once the eigenstates have been obtained, we then focus on the time-dependent tight-binding
equations

dy,
in % = eEantly — It — J i ©

As in the previous section, we introduce the dimensionless electric field F = efa/J as well
as the dimensionless time T = (J/h)t. We then rewrite (6) as follows:

W = Fn, — (Ynet + Y1), )
where the dot indicates the derivative with respect to 7. To obtain the wavefunction, we
introduce the following combination of eigenstates:

Yalt) = Y ex eI, 2/ F). ®)
k

Using the recurrence relation of the Bessel functions (A.1), it is a matter of simple algebra to
prove that (8) is the solution of (7).

The coefficients ¢; can be obtained from the initial wave packet v, (0) as follows.
Multiplying (8) at T = 0 by J,_4(2/F) and performing a sum over all lattice sites n, we
get

g =Y Yn(0)Juy2/F). ©)

Note that the normalization of the wave packet is ensured if ), lck]? = 1.
We now calculate the expected value of the electron position at time ¢, defined as follows:

x(t)=a Z n|v,))? =a Z Z €4 Siq 4TI (10)
n k q

where Sy, is calculated in the appendix (see equation (A.5)). Therefore,

2 .
x(t) :aZk|ck|2+7“Re (e_‘FTchcZH). (11)
k k
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Figure 2. Squared wavefunction |, (t)|> as a function of the site index and time (in units of the
Bloch period, tp) when ¢cp = ¢1 = 1/\/5 and F = 0.5.

(This figure is in colour only in the electronic version)

Finally, the centroid position, defined as £(t) = x(¢) — x(0), is obtained as follows:

W .
£(1) =5 - Re |:(e"“‘" ~1 Xk: ckc:+l:| , (12)

where wp = e£a/h = 2 /15 is the so-called Bloch frequency and W = 4 is the band width.
As working examples, we now consider three different initial conditions.

3.1. Electron initially localized at a single site

In this case, ¥,,(0) = §,0, where it is assumed that the electron is initially localized at
n = 0 without loss of generality. From (9), one gets ¢, = J_;(2/F), and the orthonormality
condition (A.2) leads to £(¢) = 0. As a consequence, the expected position of the electron is
the initial site at all times. The electron does not perform BOs, in the sense that the centroid
remains located at the initial site. Nevertheless, the width of the wave packet varies in time.
The calculation is lengthy but straightforward, and here we quote only the final result

1 W . wplt
— —[sin| —}|.
N A

Therefore, the wave packet remains at rest but develops a breathing mode when the electron
is initially localized at a single site.

Ax(t) =

13)

3.2. Two Wannier-Stark eigenstates

Consider the situation when ¢y = ¢; = 1/+/2, so the wave packet (8) is a superposition of two
Wannier—Stark eigenstates:

Vat) = 512/ F) + € 12/ F)). (14)
The centroid position can be obtained from (12):
E@) = l(cos wpt — 1). (15)
4e€

In contrast to the previous case, now the centroid oscillates harmonically with the Bloch
frequency and the amplitude is given by W /4e€. Figure 2 shows the squared wavefunction
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[, (£)]? as a function of the site index and time when F = 0.5, where BOs in real space are
clearly observed.

3.3. Exponential wave packet

As a third illustrative example, we consider a wave packet that initially has an exponential
profile of the form

Y (0) = Ne /A, (16)

where the normalization constant is given by N 72 = >, exp(=2|n|/A). From (9) and (12),
the centroid position can be rewritten as

4 —iwpt *
£(t) = QRG (e -1 Xn: Un(0)9,,,(0) | . a17)

In the case of the exponential wave packet, > ¥,(0)y¥ ¥, (0) = exp(—1/A). Therefore, the
centroid is
W
Et)=—¢e (coswpt — 1) . (18)
2e&
As a conclusion, we observe that the exponential wave packet also performs BOs.

Two limiting cases are worth considering. In the first case, when the initial wave packet
is strongly localized (A — 0), the amplitude of the centroid motion vanishes. This result is in
perfect agreement with that obtained in section 3.1 when the initial wave packet was localized
at a single site. In the opposite limit, when A > 1, the exponential e~'/* can be safely replaced
by unity and the amplitude is W/2e€. In this case, we recover the amplitude Ap of the BOs
obtained by semiclassical arguments (see the introduction).

4. Conclusions

In conclusion, in this paper we have presented a detailed analysis of the dynamics of
tightly bound electrons in a 1D lattice under an applied electric field. The equation for
the wavefunction amplitude at lattice sites can be solved in the time domain with the aid of
the Wannier—Stark eigenstates. The semiclassical approach predicts that the electron performs
BOs with well-defined angular frequency and amplitude. However, our analysis has shown
that the details of the dynamics depend on the initial conditions and, in some cases, are not
well described by the semiclassical approach. For instance, the centroid of the wave packet
does not oscillate at all when the electron is initially localized at a single site. The analysis
requires a basic knowledge of special functions only. Therefore, we claim that it is suitable
for introductory courses in solid state physics.
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Appendix A. Basic properties of Bessel functions

Bessel functions satisfy the recurrence relation

2n
7-’11()5) = n+l(x)+~]n—l(x)v (Al)
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and the orthonormality condition

D dnk ) i () = S (A.2)

In particular, note that Y J2(x) = 1.
Bessel functions of positive and negative index are related by J_,(x) = (—1)"J,(x).
Therefore,

S = ndl () =k Y JX@)+ Y nll(x) =k (A.3)

The last sum vanishes since an (x) = an (x), and positive and negative terms cancel each
other. The width of the Wannier—Stark eigenfunctions is related to the following sum:

ST @) =Y n2IE () =Y nI2x) + 2k (x) + K

2
=(3) L@+ @F 8 =5 48 (A4

where the recurrence relation (A.1) and the orthonormality condition (A.2) have been taken
into account.

Finally, we calculate the following sum invoking again the recurrence relation (A.1) and
the orthonormality condition (A.2):

Stg = Y Ik () Iaq(x) = kg + ) nJu(X) T g ()

X
=kbig +5 Z Tt () I gt () + Ju 1 () T gai (x)

x
= kg + E(Sk,qﬂ + 8k g—1)- (A.5)
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