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Abstract. — Energy levels of the Dirac oscillator perturbed by arbitrary nonlocal separable
vector and scalar potentials are found in a closed form. Unlike the nonrelativistic case, the
perturbation potential radically changes all energy levels of the oscillator. The &-function limit of
the perturbation potential is discussed in detail.

Avakian et al. [1] have analysed the effects of a &-shaped potential on the nonrelativistic
harmonic-oscillator spectroscopy. These authors found that the J-function potential only
affects even harmonic-oscillator levels. Also they demonstrated that, in some himiting cases,
the existence of this singular potential leads to an anomalous double degenerate levels and to
the falling of the particle into the centre. This problem is of interest in quark physics since
the effects of Coulomb-like potentials, which could appear between quarks[2), may be
qualitatively described replacing the actual 7' dependence by a more simplified short-
ranged function. In this sense, the one-dimensional ¢-function potential is a good analog for
the Coulomb interaction. Relativistic effects on the speetroscopy of the singular harmonic-
oscillator have been considered by Dominguez-Adame and Macid [3]. These authors studied
the Dirac equation with an equality mixed vector (the time component of a Lorentz vector)
and scalar harmonic-oscillator potentials plus a Lorentz scalar é-shaped potential. The
resulting equation reduces to a Schrédinger-like form for the upper cpmponent of the
wavefunetion, so its solution is readily found.

Moshinsky and Seczcepaniak [4] have recently considered a very interesting linear
interaction in the Dirac equation, which reduces to a standard harmonic-oscillator equation
with a strong spin-orbit coupling in the nonrelativistic limit. These authors gave to this
problem the name of Dirac oscillator. Moreno and Zentella [5] have suggested that the Dirae
oscillator is a good candidate to explain the observed confinement of quarks. The aim of this
letter is to study the spectroseopy of the Dirac oscillator in a (1 + 1)-dimensional space
perturbed by an arbitrary potential. Therefore, we present a generalization of previous
works [1, 2], in the sense that we not only consider a relativistic equation but also we do not
restrict ourselves to a é-function perturbation potential. The perturbation potential will be
replaced by a nonlocal separable potential, as defined by Calkin et al. [6]. In fact, this is not a
limitation since it is always possible to find & nonlocal separable potential (or a sum of
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nonloeal potentials) which reproduces any set of given wave functions [7). This procedure
enabies us to obtain an exactly solvable equation, leading to closed forms for the energy
levels of the perturbed oscillator.

The Dirac osecillator Hamiltonian Hyp, in one-space dimensions (say x) can be obtained
from the free-particle Hamiltonian H;=ap + Sm in a nonminimal way replacing m by
m + tmwad [8]. Here e denotes the oscillator frequency and «, 8 are 2x 2 Hermitian,
traceless matrices with square unity such that «8+8x=0. Therefore Hpo=
= a{p — mmefBx) + Bm, so the perturbed Dirac oscillator equation for steady states reads

[a(p — tmewBa) + Bm — E + U@ ¢ (x) =0, (D

The perturbation potential is taken to be U(x) = V(x) + 35 (x), where V and S are the vector
and scalar parts of the potential.

Solutions of the perturbed Dirac oscillator equation (1) may be expressed in terms of the
Green’s function for the Dirac oscillator G(x, 2"; E) as

L) = ~ f dv’ (e, «'; B) Ux') Y(2') . @)

The Green’s function is a 2 x 2 matrix-valued function satisfying the inhomogeneous
differential equation

[x(p — mwbx) +m - E]Gx, x"; E)=1L&x —x") 3)
subject to suitable boundary conditions. Here I, stands for the 2 X 2 unit matrix. Thus we

explicitly write

(4)

. _ G++(m, ".,_,"') G+—($p :L")
“o s )= (G_m, ¥) G, w’>) ’

where the dependence on E of the matrix elements is understood. For the sake of simplicity
we define the dimensionless variable &= (2mw)z and

(2mew)t?

g5 8) = E+m G358, (5a)
EP-mt 1 1
Ay = Y 12 5" (5b)

Inserting (4) in eq. (3), we obtain four coupled differential equations, which are easily
decoupled in the standard fashion. Taking the representation = = ¢, and 8=, (¢’s denote
the Pauli matrices), we have

N= — _a_'“é. ]
G:-T—(E;'E)— :(aE + z)g_t(g,f) (6)
and
LA | N
(_ a£2+4 As 2)9:(5,5)—6‘(&',5). N

Notice that ¢g.(Z, &) are directly related to the Green’s function of the standard one-
dimensional harmonic oscillator, provided that g.(£, #) vanish as |&| — ». Equation (7) is
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golved by Sturm-Liouville theory, and solutions may be written in terms of parabolic
eylinder functions D(A, &) as

D@+, —§0 DG, &)
2D(G, 00D +1,0)7

g:4,8) = (8)

where £.=min(Z, &) and £, =max(, ). The relation D(&,0)=2"2I"(1/2)'(1/2 — 2/2) is
useful in order to compute the denominator. The complete Green’s function of the Dirac
oscillator is determined with the aid of (5) and (6). It is worth mentioning that G..(&, &) are
continuous functions in the plane (&, &), whereas G.z(&, £') exhibit a finite jump on the line
E=¢&'.

As we mentioned above, the actual local potential U(x) in (1) is replaced by a projective
operator Vpo of the form

Veo = (g, + B9 v(@) [ de’ v(@) 9@, ©)
where g, and g, are the vector and scalar coupling constants, respectively, and v(x) is a shape
function. We take even funetions v(x) = »{— «) hereafter. Different shape functions for the

vector and scalar parts of the potential eould also be handled, although we omit here this
case without loosing generality. From (2) one gets

P@) = = [dx’ G, 2’5 E)o@ gy +Bg0 X (10)

where

¥ = j der (@) () . (11)

The consistency of egs. {10) and (11) leads to
Det(l + j d f &’ Gz, @3 B) (@) v X g, + ,Bgs)) ~0. (12)

Since v(x) is an even function of the spatial coordinate, it is an easy matter to demonstrate
that integrals involving off-diagonal matrix elements of G(x, 2'; E) vanish, according to (6)
and (8). Therefore, the consistency equation reads

1+ (g, +g)J. 11+ (g, —g)J_1=0 {13)

with the notation

EEM [ g [ 2 g.& ) u@me). (14)

2mew

Je=

:

Equation (13) determines the energy levels of the perturbed Dirac oscillator. These levels
will depend, as expected, on the exact form of the shape function and on the values of the
coupling constants. Both the shape function and the coupling constants can be calculated
from the solutions of the wave equation for the potential I/(x) alone [7}. In general situations
the procedure may be rather involved although straightforward. In order to circumvent this
problem, one could try different simple shape functions untii the desired precision of the
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results is reached. The only limitation comes from the fact that integrals appearing in (14)
must converge to obtain acceptable solutions. We should stress that we are not restricted to
zero-ranged potentials, as in previous models of perturbed relativistic oscillators [3].

As an example of the treatment introduced above, we take the limit v(x) — (). This case
provides a direct comparison with the spectroscopy of the nonrelativistic singular oscillator,
previously considered by Avakian et al.[1]. Defining the function

E+m TI'(—(E*—m®ldrmw)

) T2 — (= ) 19
we find from (13) that
P IR Y P T
L+(g3- g+ [”(E)Jrn(E)}Jr > [,(E) n(E)] 0. (16)

Real solutions of this equation yield the energy levels of the siﬁgular Dirae oscillator. Figure 1
shows these levels as a function of the coupling constants for the case = m. We can draw
several conclusions from the above results.

a) In the nonrelativistic limit and for weak coupling (g2, 2, o/m and E/m much smaller
than unity), eq. (16) leads to the same spacing between levels as that quoted by Avakian ef
al.[1] in dealing with the Schridinger equation, although energy levels are shifted
downwards by a constant factor «/2. This is a peculiarity of the Dirac oscillator with regard
to its nonrelativistie limit [9].

h) When the singular potentials are adiabatically turned off (g, g, — 0), we obtain the
energy spectrum ¥ =+ m and E*=m*+ 2nmew, n being a positive integer (recall that I
function becomes divergent for zero or negative integer arguments). This spectrum is in
agreement to that obtained by Dominguez-Adame and Méndez [9] solving the unperturbed
Dirae oscillator equation in (1 + 1)-dimensions. On the contrary, taking into acecount that
N(—2)T(1/2 —x)—>{(—x)"" as x— », we find that energy levels are given by

[20m* — E*)2 + (m + EXg. + g)[2(m* — ED' + (m ~ E)g, — g,)] (17

as w vanishes (i.e. neglecting the effects of the Dirae oscillator interaction). This result has

-3 T 1 T v ) -3 T T T -
-8B —4 V] & 8 -8 —& o] 4 8

Fig. 1. - Energy levels of the Dirac oscillator with « = m perturbed by @) vector and b) scalar, nonlocal
é-function potentials, Dashed lines indicate unperturbed levels.
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been previously found by Calkin et al. [6] in dealing with the nonlocal separable é-function
potential in the Dirac equation.

¢) The particle energy remains finite even if the singular potentials are rather strong.
Therefore, unlike the nonrelativistic case [1], the particle cannot fall into the centre.

d) From fig. 1 we notice that the singular Dirac oscillator can bind particles as well as
antiparticles. This is in contrast to the relativistic singular harmonic-oscillator previously
introduced by Dominguez-Adame and Maci4 [3], for which antiparticle states retain their
unbound continuum and only one negative-energy bound state appears for attractive -
function potentials.

e) For pure-vector, singular potentials (g, # 0, g, =0), we observe in fig. 1 that each
energy level is an increasing function of the coupling constant g,. Energy levels for the limit
cases g,— @ and g,— — ® are just the same and coincide with those of the unperturbed
Dirac oscillator. This result is explained by noting that the transmission coefficient for
vector nonlocal ¢-function potential, calculated in[6]

(E%—m?)(1 + gi/a)

T =
(E*—md(1 - gidp + g2

(18)

tends to unity as |g,]— %, no matter the value of E. Therefore the nonlocal -function
potential becomes transparent to all energy and presents no effects on the Dirac oscillator
levels.

) For pure-scalar, singular potentials (g, =0, g, # 0), energy levels are alternatively
shifted upwards and downwards from the unperturbed (g, — 0) levels. The same behaviour
is observed in dealing with scalar, local é-function potentials[3). As discussed in the
previous case, we find the same result again for the limit situation |g,|— <. The
transmission coefficient for sealar nonlocal #-function potential is [6]

(E?—mH{(1 —g2/4?

T =
(B2 —-m?( + g2/ia¥ + még:’

(19}

which goes to unity in that limiting case. Also note that the transmission coefficient goes
down to zero for |g|=2. Hence, a particle moving in the left (right) region cannot go
through the barrier and will remain there indefinitely. Actually, one has to deal with two
separate potentials, so an apparent double degeneracy of levels occurs. This degeneracy
explains the crossing of levels for |g,| =2, as seen in fig. 1.

In summary, we have solved the perturbed Dirac oscillator equation by means of the
Green’s function for the unperturbed equation. The perturbation potential has been replaced
by a nonlocal separable interaction, thus leading to closed forms for the energy levels. The 4-
function limit has been discussed in detail.

* * %

The author thanks B. MENDEZ and M. A. GONZALEZ for the critical reading of the
manuscript.
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