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Abstract. — The Dirac equation for a harmonie-oscillator potential plus a Lorentz sealar delta-
shaped term has been solved. This singular potential changes the usual oscillator energy levels.
Unlike the nonrelativistic treatment, the particle eannot fall into the centre for any negative
value of the delta-function strength. The apparent occurrence of double degenerate energy
levels for some limiting eases is found.

A large number of papers have appeared in the literature about the harmonie-oscillator
quark model. The nonrelativistic treatment of this model explains the ground state of
baryons and mesons in a rather simple way. Moreover, confining properties of quarks are
well understecod within this framework. Nevertheless, one can expect that relativistic
treatments should give better results. In this way, the Dirac equation has been solved for an
equally mixed harmonic potential formed by adding a scalar potential to the usual time
component vector potential{l]. This scalar term is required for obtaining bound-state
solutions of the Dirac equation, since harmonie vector coupling cannot bind particles due to
the Klein paradox. This quark model has properties quite similar to the MIT bag model [2].

Concerning quark physiecs at small distances, Avakian et al. [3] have analysed the effects
of a delta-shaped potential on the nonrelativistic harmonic-oscillator spectroscopy. They
have found that a ¢é-function potential changes radically the even harmonic-oscillator levels,
while odd levels remain unchanged and, in some limiting cases, leads to the production of
anomalous double degenerate energy levels and to the falling of the particle into the centre.
Statistical properties of this approach have been considered in a recent paper by Janke et
al. [4]. Nevertheless, relativistic effects have not been taken into acecount in the above-
mentioned works.

The aim of the present letter is to generalize the previous model to be applied for Dirae
particles. We consider an equally mixed harmonic potential plus a Lorentz scalar delta-
shaped term, {.e. a potential of the form V(x) = (1/4)(1 + 5,) me® 2% + Qq.8(x), O being the
strength of the é-function potential, and ¢’s denote the usual 2 X 2 Pauli matrices. In order to
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solve the Dirac equation for this potential, we should use appropriate boundary conditions
around the origin., As Sutherland et al. [5] pointed out, the concept of a relativistic é-funection
potential exhibits some ambiguities. A reasonable eriterion to resolve these ambiguities has
been given by McKellar et al. [6]. For Lorentz scalar potentials that approach a s-function
limit (located to ), they have found the following boundary condition for the two-
component wave function of the Dirac particle (in the standard representation)

cosh (Q/ke) 1sinh (Q/he)

¥ (@) = (w isinh Q%) cosh (Q/he) )'*" (@) D

First, for providing some insight into the general problem, we shall apply this result to
study bound states of the one-dimensional Dirac equation 7]

{__ ihcafi+czmc2+V(m)—E}(¢(m))=0, (2)
da x (@)

for an attractive Lorentz scalar potential V (&) = Qa, f(&) (€2 < 0) in the limit f(x) — S(x). H{x)
and y(x) denote the upper and the lower components on the wave function (%),
respectively. For x+# 0 we have

' @=—indtd@), (30
¢ () = indy (x), (36)
where the prime indicates differentiation with respect to the argument. £=

= (mc® + EN/(me® — EY® and nhe = (m? ¢ — E®)'? are real parameters for bound states. The
solution of egs. (3) is readily found

(S
$x) = 4
B (ﬁli;_l)exp [zz], 2x<0,

A( ll)exp[~nx}, x>0,

and using the boundary condition (1) we can obtain the particle energy
— tgh (Q/he) = + VI — & =F(¢), (5)

with = E/mec®. Note that no bound states can occur for positive values of the potential
strength. Figure 1 shows the graphical solution of this equation for an arbitrary negative
value of Q2. Two values (positive and negative) of the energy are possible for each value of Q,
so this potential can bind particles and antiparticles alike. Note that the particle energy
remains finite and never crosses zero even if the potential becomes very strong. Therefore,
the particle cannot fall into the centre, as occurs in the nonrelativistic case.

Now, bearing in mind the results obtained above, we are faced with the solution of the
Dirac equation (2) for a singular harmonie-oscillator potential. Thus we write

—they' (x) + (mc2 -E+ % e’ ¥ + Qe‘(m)) #(x)=0, (Ba)

—ihed (@) + (—mc® — E — Q3 (x))y (x) = 0. (65)
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Fig. 1. - Bound states energy for a single attractive é-function potential.

For the sake of simplicity, we introduce the notation z=[2(1+ ¢)m? "M,
A+ 12=meHe — DI + )21V and a = (hw/2mc®)Y[8/(1 + £)*]4, so that

iy’ (z)+a(i\+%-%z2)¢(z):0, (Tar)
Tag’ () =—x(2). (7b)

Since |¢/ =1, A becomes a real parameter. Inserting (76) in (7a) we obtain

1 1
¢"(z) + (). +--—z2)4(z) =0.
2 477 (8)

Solutions of this differential equation are expressed in terms of parabolic cylinder functions
D; (z). Since ¢(z) must vanish as |z| — =, and after using eq. (7), we can readily write the

particle wave function
—xDi@) 0

#(.’E)= ) D, (- 2)
B(—iaD;_(— z))’ #<y,

(9)

where A and B are constant. The recurrence relations
Dy =—(/2)D; () + 1D, _,(2) = (2/2) D, (z) D; 1, ()
are useful for obtaining D} (=* z).
Using the boundary condition (1) and the relation [3,(0) =2"21"(1/2)/"(1/2 — 2/2), we

obtain two algebraic equations for A and B. Requiring the determinant to vanish for
nontrivial solutions, we find

— tgh (Q/he) = 2[(1/\/1%(-%) /r(-%—%) + \/éal”(%— %) /r(-—%)r. (10)

This transcendental equation determines the energy levels and has to be solved numerically.
For weak coupling, the nonrelativistic limit is found to be

_ 1 2 A
— (Q/he) @Ry = 2\/§r(2 2) /r( 2) , (11)
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with A + 1/2— (E — mc¢?)/hw, in agreement with the results of [3] and [4]. In the particular
case {2 — 0 we have I'(1/2 — A/2) = o0 or I'(— A/2) = » from eq. (10), leading to the quantum
condition A = n (» being a nonnegative integer) and therefore the particle energy is given by

(E — meD(E + meH? = hw(Zme®) 2 (n + 1/2). (12)

The first few energy levels for £ =0 are shown in table I (as an example, we shall take
hw = mc? in our numerical results). This particular situation has been previously solved by
Ravndal [1]. This author has considered a three-dimensional model of the harmonic coupling,
so the factor 1/2 of the eq. (12) must be replaced by a factor 3/2.

TABLE 1. — Energy levels for a relativistic harmonic-osciliator {(hw = mc?) pétentiai without delta-
shaped term (2 =0).

7 0 1 2 3 4 b 6

E/mc® 1.45 2.19 2.81 3.37 3.88 4,36 4.51

The graphical solution of eq. (10) is plotted in fig. 2. The right-hand side of this equation is
denoted by f(¢}, whose zeros (2 =0) are given in table I. The upper (lower) half-plane
corresponds to negative (positive) values of the potential strength. Unlike the
nonrelativistic treatment, the presence of a delta-shaped potential changes every energy
levels of the relativistic harmonie oscillator. For a nonzero value of {2, the energy levels are

4R
A I N A W B W

Fig. 2. — Graphical determination of the energy levels for a relativistic harmonic-oscillator (hw = mc?)
potential with a é-function potential term.

alternatively shifted upward and downward, as seen in fig. 2. Note the occurrence of a
negative energy level for negative values of £2, which seems to be related to the above-
mentioned energy spectrum of a single attractive J-funetion potential (for energy values
ranging from —me® to +mc?, fig. 2 is quite similar to fig. 1). The harmonic-oscillator
potential does not act on the antiparticle states, which retain their unbound continuum
spectrum; therefore, negative-energy bound states appearing when the sealar 4-function
potential is introduced represent binding of antiparticles, just as occurs in the case of the
pure delta-shaped attractive potential.

Finally, we should remark the production of double degenerate levels as |Q] — < (the
first few degenerate levels are shown in table II), which is a common feature to the
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TABLE II. — Double degenerate energy levels for a relativistic harmonic-oscillator (ho =me?)
potential with an infinite delta-shaped term (|Q2] = ).

Energy levels (E/mc?)

=—o 6.08 2.43 8.59
Q=+ 1.95 3.15 4.13

nonrelativistic treatment given by Avakian [3]. Nevertheless, the level distribution in these
limiting spectra depend on the repulsive or attractive character of the 4-function potential,
while nonrelativistic levels [3] do not. The oceurrence of these degenerate levels is easily
understood since a strong scalar &function potential behaves like an impenetrable wall, no
matter the sign of the strength (the transmission coefficient vanishes [6]). Therefore, a
particle moving in the left (right) region cannot go through the barrier into the right (left)
region. Actually, one has to deal with two separate potentials, so the theorem of
nondegeneracy in one dimension ig fulfilled.

We have proved that the wave function of a Dirac particle in a singular harmonie-
oscillator potential can be explicitly written down. Energy levels of a relativistic harmonic-
oscillator are radically changed by adding a Lorentz scalar delta-shaped term. This result is
expected to be interesting in quark physics at small distances. The particle cannot fall into
the centre for any negative value of the delta-function strength. The apparent occurrence of
double degenerate levels as the delta-function potential (attractive or repulsive) becomes
large has also been shown.
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