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Abstract. We study the nature of the vibrational modes in a two-dimensional harmonic lattice with long-
range correlated random masses, with power-law spectral density S(k) ∼ 1/kα. We obtain numerically the
scale invariance of the fluctuations of the relative participation number and the local density of states. We
find signatures of extended vibrational modes when α > αc and αc depends on the magnitude of disorder.
In order to confirm this claim, we also study the time evolution of an initially localized perturbation of
the lattice. We show that the second moment of the spatial distribution of the energy displays a ballistic
regime when α > αc, in agreement with the occurrence of extended vibrational modes.

PACS. 74.25.Kc Phonons – 73.23.Ad Ballistic transport – 73.20.Jc Delocalization processes – 72.15.Rn
Localization effects (Anderson or weak localization)

1 Introduction

Spatial localization of collective excitations by a ran-
dom potential is a quite general feature of classical and
quantum systems [1]. Most vibrational modes of one-
dimensional (1D) harmonic chains with a random se-
quence of masses are localized [2]. However, there are
a few low-frequency modes not localized, whose number
is of the order of

√
N , N being the number of masses

in the chain [2,3]. Besides these low-frequency extended
modes, short-range correlations in the spring constants [4]
and masses [5] lead to a new set of non-scattered modes.
Among models with short-range correlation, 1D chains
with diluted disorder also support extended modes [6].
The model consists of two interpenetrating sub-lattices,
one composed of random masses and the other being pe-
riodic. Due to the periodicity of one sub-lattice, special
resonant energies appear, giving rise to a set of extended
states. In addition, the effect of long-range correlated dis-
order on the transport properties in low dimensional sys-
tem has attracted much interest. In general, extended
states for 1D potentials with long-range correlations was
predicted [7] and experimentally verified in a microwave
waveguide with intentionally introduced correlated disor-
der [8].

Moreover, the two-dimensional (2D) Anderson model
under the presence of isotropic scale-free long-range cor-
related disorder was investigated in detail [9]. By using a
single parameter scaling hypothesis the phase diagram and

a e-mail: fidelis@if.ufal.br

the critical correlation length exponent were estimated [9].
More recently, a reduction of the localization length due
to specific long-range correlations in random potentials
was experimentally observed [10]. Using a single mode
wave-guide, a strong decrease of the localization length
was observed when white-noise scatterers are replaced by
a correlated arrangement of scatterers. In harmonic sys-
tems, it was numerically proven that when the sequence of
masses is long-range correlated, with a power law spectral
density S(k) ∼ 1/kα, a phase of extended modes emerges,
provided α > 1 [11].

In this work we study 2D harmonic lattices
with masses exhibiting long-range correlated disorder,
S(k) ∼ 1/kα. We focus on the participation number and
its fluctuations, as well as the local density of modes
within the band of allowed frequencies. We find extended
vibrational modes in the low-frequency region for α > αc,
where αc depends on the magnitude of disorder. The dy-
namics of an initially localized excitation is also studied by
computing the second moment of the energy distribution.
We find that, associated with the emergence of a phase of
delocalized modes, a ballistic regime takes place.

2 Physical model

We start by considering a 2D disordered harmonic lat-
tice of N ×N masses, for which the classical Hamiltonian
can be written as H =

∑
n,m hn,m(t), where the energy
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hn,m(t) of the mass at site (n,m) is given by

hn,m(t) =
P 2

n,m

2mn,m
+

1
4

[
(Qn+1,m −Qn,m)2

+(Qn,m −Qn−1,m)2 + (Qn,m+1 −Qn,m)2

+(Qn,m −Qn,m−1)2
]
. (1)

Here Pn,m and Qn,m define the momentum and displace-
ment of the mass at site (n,m). In our calculations, we will
use units where all elastic couplings are set to unity. By
considering only longitudinal displacements and inserting
a solution of the form Qn,m = un,m exp(iωt) we obtain
the following equation of motion

(
4 − ω2mn,m

)
un,m = un−1,m + un+1,m

+un,m+1 + un,m−1 . (2)

After defining un,m = cn,m/
√
mn,m we get

(
4

mn,m
− ω2

)

cn,m =
cn−1,m√

mn,mmn−1,m

+
cn+1,m√

mn,mmn+1,m
+

cn,m+1√
mn,mmn,m+1

+
cn,m−1√

mn,mmn,m−1
. (3)

In order to generate a long-range correlated sequence
of masses, we apply a 2D discrete Fourier transform
method. We define a random mass variable as mn,m =
σ tanh (ζn,m) + μ where

ζn,m =
N/2∑

kn,km=1

1

(k2
n + k2

m)α/4
cos

(

2π
nkn

N
+ ψn,m

)

× cos
(

2π
mkm

N
+ φn,m

)

. (4)

ψn,m and φn,m are N2/2 independent random phases uni-
formly distributed in the interval [0, 2π]. The parameters σ
and μ are chosen to have 〈mn,m〉 = Δ = 1 and 〈m2

n,m〉 = 2
to avoid negative masses. This sequence is the trace of a
2D fractional Brownian motion with a power-law spectral
density S(k) ∝ 1/kα, where k =

√
k2

n + k2
m [9,12]. In the

case α→ 0 one recovers the Anderson model with uncor-
related disorder. The opposite limit α → ∞ is analogous
to a tight-binding model with a harmonic potential. In-
termediate values of α give rise to a long-range correlated
sequence of masses.

2.1 Eigenmodes

The vibrational modes can be found by exact diagonal-
ization of the secular matrix of coefficients cn,m. In our

calculations we compute the average of the participation
number, defined by [11]

ξ(ω2) =
N∑

n,m=1

c2n,m(ω2)/
N∑

n,m=1

c4n,m(ω2) . (5)

In general the participation number is a good estimate
of the number of sites that participate in the oscillation.
For extended states, ξ is proportional to the total number
of sites (ξ ∝ N2 for a square lattice). We will be also
interested in the relative fluctuation of the participation
number given by

η(ω2) =
√
〈ξ2(ω2)〉/〈ξ(ω2)〉2 − 1 . (6)

Within the framework of random and non-random long-
range hopping models, it was demonstrated rigorously
that the distribution function of the participation func-
tion is scale invariant at the Anderson transition [13].
Such scale invariance has been used to monitor the crit-
ical point of long-range hopping models [14]. Within the
framework of the single parameter scaling hypothesis [9],
the relative fluctuation η at the vicinity of the mobility
edge can be written in the form η(ω2) = g[(ω2−ω2

c )N1/ν ],
which reflects the scale invariance of the participation
number distribution at the critical point on which the
relative fluctuation assumes the value g(0) irrespective
of the system size. We will employ a finite size scaling
analysis to estimate the critical exponent ν which gov-
erns the scaling behavior of the relevant length scale at
the vicinity of the mobility edge, i.e., l∞ ∝ |ω − ωc|−ν .
According to the above scaling hypothesis, the derivative
δ = ∂η(ω2)/∂ω2 shall scale at the vicinity of the criti-
cal point as δ = N1/νf [(ω2 − ω2

c )N1/ν ]. At the mobility
edge ω = ωc, δ scales with the system size as a power-law
N1/ν from which the critical exponent ν can be directly
estimated.

We also consider the local density of states (LDOS) [15]

ρn,m(ω2) =
〈 ∑

β

|cn,m(ω2
β)|2 δ(ω2 − ω2

β)
〉
, (7)

where the sum runs over the eigenmodes β of the lattice.
Averaging ρn,m(ω2) arithmetically over N × N sites we
obtain the averaged density of states

ρa(ω2) =
1
N2

N∑

n,m=1

ρn,m(ω2) . (8)

The geometric mean of the LDOS is defined as

ρg(ω2) = exp

[
1
N2

N∑

n,m=1

ln ρn,m(ω2)

]

. (9)

For extended states, ρa(ω2) and ρg(ω2) are almost equal,
whereas for localized states ρg(ω2) vanishes and ρa(ω2)
remains finite [15]. This implies that the ratio

R(ω2) = ρg(ω2)/ρa(ω2) (10)

can be used to monitor extended states (R > 0) and lo-
calized ones (R → 0).
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Fig. 1. Finite size scaling of the normalized participation
number versus ω2 for (a) α = 0 and (b) α = 3.

2.2 Energy transport

The fraction of the total energy H0 at the site (n,m) is
given by hn,m(t)/H0 and the second moment of the energy
distribution, M2(t), is defined by [16]

M2
2 (t) =

N∑

n,m=1

{[
n−ñ(t)

]2+
[
m−m̃(t)

]2
}hn,m(t)

H0
, (11)

where an initial excitation is introduced at site (n0,m0),
ñ(t) =

∑N
n,m=1 nhn,m(t)/H0 and m̃(t) is defined similarly.

The second moment of the energy distribution (11) has
the same status of the mean-square displacement of the
wave packet of an electron in a solid [16]. In a disordered
three-dimensional system with extended states, the ob-
tained dynamics is in general diffusive. However, in 1D
harmonic system with strong correlations in the mass dis-
tribution, M2

2 (t) have shown to have ballistic behavior.

3 Results

Eigenmodes and eigenfrequencies were obtained by direct
diagonalization of the equation for the amplitudes cn,m,
equation (3), using lattices up to N ×N = 120× 120 sites
with rigid boundary conditions. From them, the participa-
tion number (5) and its relative fluctuation (6) were cal-
culated. Results were obtained after averaging over 1000
realizations of the random sequence of masses. The error
bars obtained were less than the symbols size.

Figure 1a shows the scaled average participation num-
ber 〈ξ〉/N2 as a function of ω2 for α = 0 and N × N =
60 × 60 up to 120 × 120. One can see that the average
participations number scales proportional to the number
of masses N2 only when ω → 0. For vibrational modes
with ω > 0, 〈ξ〉/N2 → 0 as N diverges, thus indicat-
ing that vibrational modes are spatially localized. This
trend changes dramatically when correlations in the ran-
dom sequence of masses are strong. In Figure 1b we show
the results for α = 3. The well defined data collapse in
the low-frequency region [ξ(ω < ωc) ∝ N1.98(4)] suggests
the existence of extended modes over a finite frequency
range. The minimum between 1 < ω2 < 2 is reminiscent
from the pure case (mn,m = m0, not shown in the figure).
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Fig. 2. (a) Relative fluctuation of the participation number
versus ω2 for α = 3. (b) Near the critical frequency all data
collapse in a universal scaling form indicating the accuracy of
the estimated correlation length exponent.

To determine accurately the value of the frequency sep-
arating the phase of extended modes from the localized
ones (hereafter referred to as mobility edge by analogy
with the electronic case), we have calculated the relative
fluctuation of the participation number, η(ω2). In Figure 2
we display η(ω2) for the same set of parameters of Fig-
ure 1b. At the top of the frequency band, the relative
fluctuation increase with the system size due to the expo-
nential localization of the eigenstates. On the contrary, at
the low-frequency part of the frequency band, the relative
fluctuation decreases by increasing the system size, signal-
ing the occurrence of extended modes. Notice that the rel-
ative fluctuations are independent of the system size at the
critical frequency ω2

c = 2.9(1). This critical frequency can
be identified as the mobility edge mentioned above. This
value is consistent with the range of frequencies display-
ing a quadratic scaling of the participation function with
the data collapse seen in Figure 1a. In Figure 1b, the rel-
ative fluctuation of the participation function η(ω2) near
the critical frequency for α = 3 versus the scaling vari-
able |ω2 − ω2

c |N1/ν , with ν = 2.70(15). All data collapse
in a universal scaling curve, indicating the accuracy of the
estimated correlation length exponent. Upper and lower
branches correspond, respectively, to exponentially local-
ized and extended states. We have obtained the exponent
ν = 2.10(20) for α = 2.5. For larger values of α, the nu-
merical estimate of the derivative becomes less confident,
once the mobility edge approaches the band edge and the
vanishing small density of states near the extremal of the
energy band degrades the statistical averages, thus result-
ing in larger error bars.

The existence of a mobility edge is further supported
by the behavior of the ratio R(ω2) given by (10). Figure 3
shows this ratio when N ×N = 120× 120 and α = 3. The
δ-function in equation (7) was computed as a normalized
box function of width 0.01. One can see from these cal-
culations that the function R(ω2) becomes large in the
frequency range ω2 < ω2

c . This is again a signature of ex-
tended states in this frequency region. On the contrary,
R(ω2) is vanishingly small when ω2 < ω2

c . Therefore, the
results from the average participation number, its fluctu-
ations and the LDOS lead to the conclusion that there



168 The European Physical Journal B

0 1 2 3 4

ω2

0.0

0.2

0.4

0.6
R

(ω
2 )

α = 3

Fig. 3. (a) Ratio R versus ω2 for N × N = 120 × 120 and
α = 3.
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Fig. 4. (a)Relative fluctuation of the participation number,
averaged over a frequency window 0.5 < ω2 < 1.5, versus α for
(a) Δ = 1 and (b) Δ = 0.75.

exists a phase of extended modes with frequency smaller
than ωc.

As mentioned in the previous paragraph, the relative
fluctuation of the participation number is an excellent tool
to determine accurately the mobility edge. The existence
of extended states have been observed when the corre-
lation exponent α is large. We make use of this tool to
elucidate the critical exponent αc above which the phase
of extended state appears. To this end, we have averaged
the relative fluctuation of the participation number over
a frequency window 0.5 < ω2 < 1.5, ηav. Figure 4a shows
the average relative fluctuation ηav as a function of the
correlation exponent α. ηav becomes independent of the
system size when the correlation exponent is about 2.
Thus, we can estimate that αc 	 2. Before concluding,
some words concerning the critical value αc and its rela-
tions with the mass distribution parameters are in order.
In reference [17], it was numerically proven that in 1D
electronic system with long-range correlated disorder, the
critical correlation exponent αc is rather independent on
the magnitude of disorder Δ. In Figure 4b we show the
same results as in Figure 4a but for Δ = 0.75. We can see
that, in this 2D harmonic system, the critical correlation
exponent is not universal, but depends on the magnitude
of disorder.

Concerning dynamical magnitudes, ñ(t), m̃(t) and
M2(t), they were obtained by solving numerically the
Hamilton equations for Pn,m(t) and Qn,m(t). Inte-
gration in time was performed using a fourth-order
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Fig. 5. Second moment of the energy distribution versus time
for a lattice size N ×N = 103 × 103 obtained by using impulse
(dashed line) and displacement (solid line) initial excitations,
for (a) α = 0 and (b) α = 3. Dotted lines are guides to the eye.
(c) Scaled second moment of the energy distribution M2(t)/N
versus scaled time t/N computed from lattices with N = 50
up to 800 and α = 3.

Runge-Kutta method with time step 10−3 and systems up
toN ×N = 103 × 103 sites. Energy conservation was used
to check numerical accuracy at every time step. Two kind
of initial conditions were used to integrate the equation
of motion. Impulse excitations correspond to Pn,m(t =
0) = P0 δn,N/2 δm,N/2 and Qn,m(t = 0) = 0. Similarly,
displacement excitations correspond to Qn,m(t = 0) =
Q0 δn,N/2 δm,N/2 and Pn,m(t = 0) = 0.

In Figure 5a we plot the second moment M2(t) as a
function of time for a 2D uncorrelated harmonic lattice
(α = 0), for both impulse (dashed line) and displacement
(solid line) initial excitations. The dynamics behavior ob-
tained, M2(t) ∝ t0.75 for impulse initial excitation and
M2(t) ∝ t0.5 is similar to that found in reference [16].
In fact, in random harmonic chains with an initial im-
pulse excitation, the energy spread is faster than that for
an initial displacement excitation [16,18]. This scenario
is consistent with the absence of extended modes. Fig-
ure 5b indicates that long-range correlations in the se-
quence of masses (α = 3) induce a ballistic behavior, i.e.,
M2(t) ∝ t1 independent of the kind of initial excitation.
These results provide further support to the occurrence
of extended modes in long-range correlated lattices. We
further collected in Figure 5c results for the scaled sec-
ond moment of the energy distribution M2(t)/N versus
scaled time t/N computed from lattices with N = 50 up
to 800 and α = 3. We numerically integrate the equa-
tion until a stationary state can be reached after multiple
reflections of the energy pulse on the lattice boundaries.
Therefore, M2(t) ∝ N due to finite size effects. A good
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data collapse for long time is found, implying that the
energy pulse spread ballistic before reaching the lattice
boundaries, in perfect agreements with Figure 5b.

4 Conclusions

We have studied the nature of vibrational modes in 2D
harmonic lattices with masses exhibiting long-range corre-
lated disorder with spectral density proportional to 1/kα.
By direct diagonalization of the equation of motion, we
have computed the participation number ξ and its fluctu-
ations η. When α = 0, corresponding to the uncorrelated
sequence of masses, the magnitude 〈ξ〉/N2 becomes inde-
pendent of the number of masses N2 only when ω → 0.
Remarkably, when correlations in the disorder are strong
(α > αc), the curves 〈ξ〉/N2 as functions of ω2 for differ-
ent values of N2 collapse onto a single curve over a broad
frequency interval [0, ωc]. Thus we claim that vibrational
modes whose frequency lies within this range are truly ex-
tended. The critical frequency ωc can be accurately deter-
mined from the size invariance of the relative fluctuation
η. The critical value αc is strongly dependent on the kind
of mass distribution. Using a finite-size scaling hypothe-
sis, we obtained a data collapse from different system sizes
close to the critical point of the localized-delocalized tran-
sition in the regime of α > αc. The critical correlation ex-
ponent was estimated to be ν = 2.10(20) for α = 2.5 and
ν = 2.70(20) for α = 3.0, indicating that the correlation
length exponent is nonuniversal.

In order to study the time evolution of an initially lo-
calized energy input, we calculated the second moment
M2(t) of the energy spatial distribution. We have shown
that M2(t), besides being dependent of the specific ini-
tial excitation and exhibiting an anomalous diffusion for
weakly correlated disorder, assumes a ballistic spread in
the range α > 2 due to the presence of extended vibra-
tional modes. The presence of new extended modes at
low frequencies and the anomalous energy spreading in-
dicate that the thermal conductivity [19] can be strongly
influenced by the existence of long-range correlated mass
distribution.
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