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Bound states in the continuum driven by AC fields
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Abstract – We report on the formation of bound states in the continuum driven by AC fields.
The considered system consists of a quantum ring connected to two leads. An AC side-gate
voltage controls the interference of electrons passing through the system. We model the system
by two sites in parallel connected to two semi-infinite lattices. The energy of these sites changes
harmonically with time. We obtain the transmission probability and the local density of states
at the ring sites and show that transmission probability displays a Fano profile when the energy
of the incoming electron approaches the driving frequency. Correspondingly, the local density
of states presents a narrow peak that approaches a δ-function in the weak-coupling limit. We
attribute these features to the presence of bound states in the continuum.

editor’s  choice Copyright c© EPLA, 2013

Introduction. – At the dawn of quantum mechan-
ics, von Neumann and Wigner constructed a spatially
oscillating attractive potential that supported a bound
state above the potential barrier [1]. This truly local-
ized (square integrable) solution of the time-independent
Schrödinger equation is referred to as a bound state in
the continuum (BIC). Much later, Stillinger and Herrick
reexamined and extended these ideas [2]. They analyzed
a double-excited-atom model, where BICs were formed
and had infinite lifetime despite the interaction between
electrons. They arrived at the conclusion that BICs may
be a physically realizable phenomenon in real atomic and
molecular systems. In this context, Friedrich and Wintgen
discussed a system of coupled Coulombic channels and,
in particular, a hydrogen atom in a uniform magnetic
field [3]. These authors interpreted the formation of BICs
as the result of the interference between resonances of
different channels. The observation of a BIC induced by
the interaction between two particles in close proximity to
an impurity has been recently reported by Zhang et al. [4].

The advent of nanotechnology has made it possible to
devise and fabricate quantum devices whose electronic
properties are similar to those of atoms and molecules.
When the size of the device is comparable to the
de Broglie wavelength, one or more degrees of freedom
are quantized and the electron wave function is spatially
confined. The similarity to atomic systems paved the

way to experimentally validate the existence of BICs in
artificial nanostructures. Capasso et al. measured the
absorption spectrum at low temperature of a GaInAs
quantum well with Bragg reflector barriers produced by
a AlInAs/GaInAs superlattice [5]. A well-defined line
at 360meV in the spectrum was attributed to electron
excitations from the ground state of the quantum well to
a localized level well above the AlInAs band edge. Never-
theless, this state cannot be regarded as a true BIC but
a bound state above the barrier since it is a defect mode
residing in the minigap of the superlattice, as pointed out
by Plotnik et al. [6]. More recently, Albo et al. used
intersubband photocurrent spectroscopy to demonstrate
that a BIC exists above (Ga,In)(As,N)/(Al,Ga)As quan-
tum wells [7]. These BICs arise from the hybridization of
nitrogen-related defect states and the extended states of
the conduction band. Furthermore, it is worth mentioning
that the analogy between photonic systems in the paraxial
regime and electronic systems has facilitated the study
[8–10] and subsequent experimental observation of
BICs [6].

Electronic transport in mesoscopic and nanoscopic sys-
tems can be also influenced by the presence of BICs.
Nöckel investigated theoretically the ballistic transport
across a quantum dot in a weak magnetic field [11]. Res-
onances in the transmission were found to grow narrower
with decreasing the magnetic field, and eventually they
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become BICs as the magnetic field vanishes. Fabry-Pérot
interference of quasibound states of two open quantum
dots connected by a long wire cause the occurrence of
BICs [12]. The resulting state is nonlocal, in the sense
that the electron is trapped in both quantum dots at the
same time. Interestingly, controlling the size of one of
the quantum dots makes the electron flow or get trapped
inside the dots. BICs were also found in parallel double-
quantum-dot systems [13] and they were found to be
robust even if electron-electron interaction is taken into
account [14]. Recently, González et al. have demonstrated
that not only quantum dots based on semiconductor
materials but also on graphene can support BICs [15].
Furthermore, Dutta and Roy have shown that BICs may
arise in heterogeneous nanostructures by engineering the
spatial dependence of the effective mass of carriers [16].
All these features stimulate the interest of BICs to develop
new applications in nanoelectronics.

In this work we extend the notion of BIC to the domain
of time-dependent potentials. Our aim is twofold. First,
we explore the possibility of the occurrence of BICs when
the electronic system is driven by a time-harmonic poten-
tial. Second, we introduce a physical realizable system
which opens a novel possibility to reveal the existence of
these exotic states in transport experiments. As a major
result, we show that the transmission, and correspondingly
the conductance at low temperature, shows signatures
of the occurrence of BICs. When the system is driven
by an AC field the BICs survive and their existence is
revealed by dynamic Fano resonances in the transmission
probability. Remarkably, it turns out that their energy can
be tuned by changing the frequency of the field. Therefore,
the conductance at low temperature presents a minimum
when the BIC crosses the Fermi level by varying the
driving frequency.

Quantum ring under an AC side-gate voltage.

– The system under consideration is a two dimensional
gas of noninteracting electrons in a quantum ring, shown
schematically in fig. 1(a). The ring is connected to
two leads (source and drain). A side-gate voltage V±(t)
breaks the symmetry of the upper and lower arms of the
ring and acts as an additional parameter for controlling
the electric current, as recently suggested for graphene-
based nanorings [17,18]. We assume that the side-gate
voltage can be modulated harmonically in time with
frequency ω. We are not considering capacitance effects as
those described in ref. [19] within the context of quantum
rings threaded by an oscillating Aharonov-Bohm flux.

In order to study electron transport across the quantum
ring, we mapped it onto a much simpler yet nontrivial
lattice model, depicted in fig. 1(b). We replace the
actual quantum ring by four sites of a lattice within the
tight-binding approximation. Two sites (0±) have time-
dependent energies ε±(t) and the other two sites, labeled
±1, are connected to semi-infinite chains. Time-dependent
site energies are given by ε±(t) = ±2∆cos ωt. To avoid

Fig. 1: (a) Schematic diagram of the quantum ring with a
side-gate voltage V±(t) connected to source (S) and drain (D).
(b) Equivalent lattice model with two time-dependent site
energies ε±(t) at sites labeled 0± and two other sites with index
±1 attached to semi-infinite chains.

the profusion of free parameters, we assume a uniform
transfer integral and vanishing site energies except at sites
0±, without loosing generality. The common value of the
transfer integral will be set as the unit of energy and we
take � = 1 throughout the paper.

Time-independent side-gate voltage. To gain insight
into the possible occurrence of BICs in the system, we
consider the time-independent case by setting ω = 0
for the moment. An incoming plane wave ψin

j (t) =
exp[i(kj − Et)], with energy E = −2 cos k within the
bands of the leads, will be partially transmitted in the
form ψtr

j (t) = t0 exp[i(kj − Et)]. The lattice period is set
as the length unit. It is a matter of simple algebra to
obtain the transmission amplitude in this case

t0 =
4 sin k

4 sin k + i (E + 4∆2/E)
. (1)

The transmission probability T (E) = |t0|
2 presents a dip

around the band center and vanishes at E = 0.
In the weak-coupling limit, namely ∆ → 0, the trans-

mission probability shows a Fano profile [20] close to the
band centre, T (E) = E2/(E2 +∆4). The width of the dip
scales as ∼ ∆2. Poles of the transmission amplitude have
a simple physical interpretation as the natural eigenstates
of the scattering potential [21]. The poles occur at
a complex energy whose real part gives the energy of
the state and the imaginary part is related to its decay
rate. There are four poles in the case under study.
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Two poles correspond to defect modes in the gap and,
consequently, cannot be identified with BICs. However,
the other two poles reside at the band centre with an
imaginary part equal to ±i∆2 when ∆ ≪ 1. In the weak-
coupling limit ∆ → 0 the poles correspond to truly bound
states. Therefore, the Fano resonance of the transmission
amplitude (1) signals the occurrence of BICs at the band
centre. A similar connection between features of the
transmission probability and the energies of the electronic
states of the closed ring was pointed out by Bütikker
et al. when the ring is threaded by a static Aharonov-
Bohm flux [22,23].

To get a better understanding of the nature of the BICs
at the band center we also calculate the local density of
states (LDOS) at sites 0±, ρ0(E). Close to the band
centre, the LDOS is proportional to |ψ+|2 + |ψ−|2, where
ψ± is the wave function amplitude at those sites. The
LDOS is given approximately as

ρ0(E) ∼
E2

E2 + ∆4
+

4∆2

E2 + ∆4
. (2)

The first term is nothing but the transmission probability,
vanishing at the band centre. However, the second term
approaches 4πδ(E) in the limit ∆ → 0, indicating the
existence of a truly bound state with energy E = 0 located
at sites 0±.

Time-dependent side-gate voltage. We now turn to
our main goal, the occurrence of BICs when the side-
gate voltage depends harmonically on time. The time-
dependent Schrödinger equation for the amplitudes ψj(t)
reads

iψ̇j = ε±(t)δj,0±ψj −
∑

i(j)

ψi(j), (3)

where the index i(j) runs over the nearest-neighbour sites
of j and the dot indicates the derivative with respect to
time. Using the Floquet formalism, the solution can be
expressed in the form

ψj(t) =

∞
∑

n=−∞

An,je
−iEnt, (4a)

where En = E + nω and n is the sideband channel index.
Since we are interested in electron transmission across the
ring, we take the following ansatz for the coefficients An,j

in the expansion (4a):

An,j =

⎧

⎪

⎨

⎪

⎩

δn0e
iknj + rne−iknj , j ≤ −1,

f±
n , j = 0±,

tneiknj , j ≥ 1.

(4b)

Inserting this ansatz in (3) leads to the dispersion relation
En = −2 cos kn where kn is real if En lies within the band,
i.e., |E + nω| ≤ 2. In addition, we obtain tn = f+

n +
f−

n = rn + δn0, ensuring current conservation. Finally,
one also gets

αntn −
∆2

En−1
tn−2 −

∆2

En+1
tn+2 = 4iδn0 sin k0, (5a)

where for brevity we define

αn = 4i sin kn − En − ∆2

(

1

En+1
+

1

En−1

)

. (5b)

The continued fraction approach developed in ref. [24]
allows us to obtain numerically the contribution of all
channels to the transmission. But if the coupling of
the ring to the AC side-gate voltage is weak (∆ ≪ 1),
only the lowest-order sidebands are significant. Then
we keep five channels and assume that tn vanishes if
|n| ≥ 3. Equation (5a) implies that t±1 = 0 in this
approximation and

t±2 =
∆2

α±2E±1
t0. (6a)

The transmission amplitude in the elastic channel is

t0 = 4i sin k0

[

α0 − ∆4

(

1

α2E2
1

+
1

α−2E2
−1

)]−1

. (6b)

Once the transmission amplitudes have been calculated,
we can obtain the transmission probability from the
general expression

Tω(E) =
∑

n

sin kn

sin k0
|tn|

2, (7)

where the sum runs over the propagating channels, namely
those channels for which En = E+nω lies within the band
of the leads. Assuming that the sidebands n = ±2 are
open, i.e., k±2 are real, the transmission probability reads

Tω(E) = |t0|
2

(

1 +
∆4

|α2|2E2
1

sin k2

sin k0

+
∆4

|α−2|2E2
−1

sin k−2

sin k0

)

. (8)

Results. – The five channels approximation discussed
above provides a closed analytical expression for the
transmission probability (8). Admittedly the resulting
expression is still involved and must be evaluated nu-
merically for the chosen parameters. We will present
some simpler expressions latter, valid in the weak-coupling
limit, but for the moment we are interested in the closed
expression (8). We assume that the coupling ∆ is smaller
or on the order of the frequency ω hereafter. Figure 2
shows the results for ω = 0.5 and ∆ = 0.1. The
pronounced dip observed at the band centre in the static
case (ω = 0), commented above and shown in the figure, is
absent if ω �= 0. Similar results can be obtained for other
sets of ∆ and ω parameters. In fact, transmission at E = 0
is unity and the quantum ring becomes transparent at this
energy. But the most salient feature of the transmission
when the side-gate voltage oscillates is the occurrence of
two symmetric and narrow dips, at energies close to ±ω.
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Fig. 2: (Colour on-line) Transmission probability as a function
of energy at ω = 0 (red dashed line) and ω = 0.5 (blue solid
line) for Δ = 0.1. The inset shows an enlarged view of the
transmission probability when E ≃ ω at Δ = 0.01 (green
dashed line) and Δ = 0.1 (blue solid line) for ω = 0.5.

Remarkably, the transmission never vanishes in the range
of energy plotted in fig. 2 and at the dips only drops at
about 0.5. Actually, the transmission probability vanishes
but only at the band edges, as occurs in the static case too.
The inset shows an enlarged view of one of the dips for two
different values of the coupling ∆. It is quite apparent that
the minimum transmission is slightly smaller than 0.5 and
it is reached at an energy close but not exactly equal to ω.
In fact, transmission at E = ω is exactly equal to 0.5 for
any value of ∆.

It is important to mention that we also solved numer-
ically the general equation (5a) to obtain the transmis-
sion probability from (7), increasing the number of the
sideband channels. The plots were indistinguishable from
those obtained within the five channels approximation,
when ∆ is smaller than ω. Thus, we can confidently use
this approximation in our analysis.

The transmission probability is an even function of
energy. Therefore, for concreteness we now focus in the
energy region close +ω, when ∆ is small. If ω is not large,
we can take sin k±2 ≃ sin k0 ≃ 1 in (8). In addition, the
term containing α2 in eqs. (6b) and (8) is negligible under
these assumptions. After lengthly but straightforward
algebra, the transmission probability reduces to

Tω(E) ≃
8(E − ω)2 − ω(E − ω)∆2 + ∆4

8(E − ω)2 + 2∆4
. (9a)

Since ω and E − ω are not large, this expression can be
further approximated by the following Fano profile:

Tω(E) ≃
1

2
+

1

2

(x − ω/4)2

1 + x2
, x =

E − ω

∆2
eff

. (9b)

To facilitate the comparison with the static case, we
have introduced an effective coupling ∆eff in such a way
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Fig. 3: (Colour on-line) Transmission probability as a function
of the parameter x defined in (9b), for two values of Δ and ω =
0.5. The Fano profile is a good approximation to both curves.

that ∆2
eff = ∆2/2. Notice that the Fano factor q =

−ω/4 becomes independent of the coupling ∆. Figure 3
compares the exact results obtained from (8), for two
different values of the coupling ∆ and ω = 0.5, and the
Fano profile (9b). In spite of the simplicity of the Fano
profile and the assumptions we made, the agreement is
remarkable in both cases.

In contrast to the static case, transmission at the dips
remains finite when the side-gate voltage is harmonically
modulated in time (see fig. 2). Therefore, it is not clear at
this stage whether the dips are due to the occurrence of
BICs in the system. To answer this question we consider
again the LDOS at sites 0±. After time-averaging over
one time period, one gets

ρ0ω(E) ∼
∑

n

(

|f+
n |2 + |f−

n |2
)

=
1

2

∑

n

(

|tn|
2 +

∆2

E2
n

|tn+1 + tn−1|
2

)

.

Using the five channels approximation, the LDOS close to
right dip (E ∼ ω) becomes

ρ0ω(E) ∼
1

2
Tω(E) +

∆2
eff

(E − ω)2 + ∆4
eff

, (10)

and a similar expression is obtained for the left dip
(E ∼ −ω), replacing ω by −ω in (10). Therefore, in
the weak-coupling limit ∆ → 0, the LDOS reduces to
ρ0ω(E) ∼ δ(E +ω) + δ(E −ω). In analogy with the static
case, we claim that the two singular peaks in the LDOS
at energies ±ω are due to a new type of BICs arising by
the interaction with the AC field.

Conclusions. – In summary, we have introduced and
studied a novel type of BICs in systems whose energy levels
are modulated harmonically in time. To be specific, we
have considered a quantum ring subjected to a side-gate
voltage oscillating in time with frequency ω and studied
its transport properties in a fully coherent regime. We
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come to the important conclusion that the BICs supported
by the quantum ring in the static case survive under
harmonic modulation of the side-gate voltage. The two
BICs driven by the AC field have energies ±ω and they
reveal themselves in the transmission, and consequently
in the low-temperature conductance, as dynamic Fano
resonances. The position of the BICs inside the spectral
band can be continuously tuned by varying the driving
frequency and eventually they could be expelled out of
the continuum when ω is larger than 2 in units of the
transfer integral, i.e., when they approaches the band
edge. Similar control of the energy of static BICs has
been recently demonstrated by adding weak nonlinearity
to semi-infinite systems [25] or by varying the interaction
between particles [4]. However, besides the different origin
of the BICs, our proposal seems to be more advantageous
for the experimental validation of these exotic states. In
this regard, it is still an open question to what extent
electron-electron interactions would mask the effect in a
real experiment. Žtiko et al. have shown that the so-
called dark states in parallel double-quantum-dot systems
are robust against interactions within a Hubbard model,
at least in the Kondo regime [14]. These states correspond
to the BICs shown in the present work when ω = 0, which
makes us confident to expect that BICs driven by AC fields
are robust even if interactions are taken into account.
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[23] Taniguchi T. and Büttiker M., Phys. Rev. B, 60

(1999) 13814.
[24] Martinez D. F. and Reichl L. E., Phys. Rev. B, 64

(2001) 245315.
[25] Molina M. I., Miroshnichenko A. E. and Kivshar

Y. S., Phys. Rev. Lett., 108 (2012) 070401.

17012-p5


