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Effects of reduced dimensionality in the relaxation
dynamics of ionic conductors
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Abstract. – We report on the dispersive ionic conductivity in Li0.5−xNaxLa0.5TiO3 (0 ≤
x ≤ 0.5), where the number of available positions for the mobile Li ions is reduced by intro-
ducing immobile Na ions. At high frequency the conductivity is power law dependent with an
exponent which increases as the number of accessible neighboring sites decreases. This result
is quantitatively accounted for in terms of a one-parameter statistical microscopic model. We
provide experimental and theoretical evidence for the importance of reduced dimensionality
resulting from the blocked pathways in slowing down the dynamics of diffusing ions.

Understanding the dynamics of mobile ions in ionic conducting materials has been the
focus of increasing research effort in recent years, mostly driven by the applications of these
materials in fuel cells, batteries, and other solid-state devices [1]. Aside from its fundamental
interest, this knowledge could be a key factor in the design of new materials with improved
properties for specific applications. Ion dynamics can be accessed experimentally by measuring
the system response to a particular excitation (electric field, mechanical stress, or nuclear
magnetization, to name a few). In particular, electrical conductivity measurements are widely
used to obtain the electric-field relaxation function in the time domain. It is well known that
the asymptotic behavior of the response function at short times follows power laws of the
form t−n and then results in a dispersive conductivity depending on frequency as ωn [2].
However, a microscopic theory of ion diffusion is lacking and there is not general agreement
on the origin of this behavior. There is also no conclusive experimental evidence on how the
structure itself, structural disorder and immobile counterions, or the dimensionality of the
underlying network for ion diffusion may affect the value of n. We examine here the latter
c© EDP Sciences



M. Castro et al.: Effects of reduced dimensionality etc. 771

issue by an experiment in which we consistently limit the number of available positions for
the mobile ions in an ionic conductor while keeping the structure unaltered. We find the
exponent n to increase systematically as the number of accessible sites decreases. This result
is quantitatively accounted for in terms of a statistical microscopic model which considers the
dimensionality of the effective diffusion pathways. We provide a consistent evidence for the
importance of reduced dimensionality resulting of the blocked pathways at microscopic level
in the slowing-down of relaxation dynamics in the case of ionic conductors [3].

The frequency dependence of the ionic conductivity can be usually well fitted by Jonscher’s
expression [4]

σ∗(ω) = σ0 [1 + (jω/ωp)n] , (1)

σ0 being the dc conductivity, ωp a characteristic relaxation frequency, and n a fractional
exponent. Both σ0 and ωp are thermally activated with about the same activation energy,
indicating that the dispersive conductivity, σ∗(ω), originates from migration of hopping ions.
Alternatively [5], electrical relaxation data can be described in terms of the electric modulus,
M∗(ω), which is directly related to the conductivity through

M∗(ω) =
jωε0

σ∗(ω)
, (2)

with ε0 the permittivity of a vacuum. The electric modulus is related to the electric-field
relaxation function in the time domain, Φ(t), by

M∗ (ω) = M∞

[
1 −

∫ ∞

0

dt e−iωt

(
−dΦ

dt

)]
, (3)

where M∞ stands for the inverse of the dielectric permittivity at high frequency, and it is
found [6] that ion dynamics is well described by the Kohlrausch-Williams-Watts (KWW)
relaxation function [7]

Φ (t) = exp
[
− (t/τ)1−n

]
. (4)

Such a time dependence gives an asymptotic power law dependence of the form t−n at short
times for the response function φ(t) = −dΦ/dt. Correspondingly, the imaginary part of the
electric modulus, M ′′(ω), shows a relaxation peak at ωτ ≈ 1 characteristic of the susceptibility
function for the electric-field relaxation process, i.e. the Laplace transform of the response
function φ(t). The fractional exponent n defines also the power law dependence of M ′′(ω)
above the peak frequency as ωn−1. The correlation between the value of n and the activation
energy of the dc conductivity is well known [8]. This correlation results in ionic conductors
characterized by higher values of n showing generally lower values of the dc conductivity at
room temperature. Hence the importance of understanding the factors that determine the
value of the exponent n which characterizes ion dynamics at short times.

In order to investigate the influence of immobile counterions on the conduction net-
work in ion dynamics we have performed electrical relaxation measurements in the series
Li0.5−xNaxLa0.5TiO3 (0 ≤ x ≤ 0.5). It has been shown previously that Li ions are able to hop
through the disordered distribution of vacant sites in the perovskite structure, while Na and
La ions remain immobile in the A sites [9]. Consequently, while Li0.5La0.5TiO3 is a superionic
conductor with σ0 as high as 10−3 S/cm at 300 K [10], Na0.5La0.5TiO3 shows an insulating
behavior with σ0 lower than 10−10 S/cm at the same temperature [11]. Neutron diffraction
studies have shown that changing the relative Na/Li concentration does not produce changes
in the symmetry group (R

−
3c) not even in the lattice parameters, which remain unaltered
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Fig. 1 – Frequency dependence of the imaginary part of the electric modulus for Li0.5−xNaxLa0.5TiO3

samples with x = 0 (�), x = 0.1 (©), x = 0.15 (�), x = 0.18 (�) and x = 0.2 (�). Solid lines are fits
using the proposed model from which values of the effective dimension d of the diffusion network are
obtained (see table I). Note that data sets have been normalized for better comparison. The inset
shows the dc conductivity at 300K as a function of lithium content of the samples [Li] = 0.5− x.

within 1 percent, showing that no cation or vacancy ordering is induced upon Na substitu-
tion. Thus, Na, Li and La remain randomly distributed in a cubic perovskite structure for
the Li0.5−xNaxLa0.5TiO3 (0 ≤ x ≤ 0.5) solid solution. The dc conductivity σ0 shows a sharp
decrease above x ≈ 0.2 (see inset of fig. 1) as a result of the percolative blocking of the con-
duction network [9]. While Li ions move easily in a cubic three-dimensional network when
x = 0, increasing the concentration of Na ions blocks conduction pathways and hence the
dimensionality of the effective network for Li diffusion is reduced towards a one-dimensional
ionic transport near the percolation threshold at x = 0.2. For x > 0.2, Li ions are limited to
finite clusters and samples no longer exhibit long-range ionic conductivity. It is important to
remark that this reduction of the conductivity is not a consequence of the mixed alkali effect
observed in glassy materials when two different mobile species simultaneously contribute to
the conductivity [12,13].

Samples of the Li0.5−xNaxLa0.5TiO3 series were prepared by a ceramic method. Details
about sample preparation and structure characterization by X-ray and neutron diffraction
can be found elsewhere [9]. Samples for electrical measurements were cylindrical pellets with
evaporated Ag contacts on both sides. Electrical conductivity measurements in the frequency
range 20 Hz–30 MHz (HP 4284A and HP 4285A LCR meters) have been performed to inves-
tigate the electric-field relaxation.

Figure 1 shows the imaginary part of the electric modulus for five different samples with
x = 0, x = 0.1, x = 0.15, x = 0.18 and x = 0.2. The real part of the conductivity is
shown in fig. 2 for samples with x = 0 (a) and x = 0.2 (b). Note the different slopes in the
log-log plot of the conductivity spectra and also at the high-frequency side of the modulus
peaks, which define the exponent n characterizing Li dynamics. For the sample without Na
ions, where Li ions move through a three-dimensional network, we find n = 0.60 ± 0.01.
Interestingly, for the sample with x = 0.2, in the limiting one-dimensional effective diffusion
network at the percolation threshold, we obtain that n = 0.81 ± 0.01. For Na concentrations
in between (0 < x < 0.2) we find that the exponent n systematically increases upon increasing
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Fig. 2 – Frequency dependence of the real part of the conductivity for Li0.5−xNaxLa0.5TiO3 with
(a) x = 0 at 186K (©), 202K (�) and 221K (�) and (b) x = 0.2 at 298K (©), 390K (�) and
505K (�). Solid lines represent power laws with n = 0.6 and n = 0.81, respectively.

the concentration x of immobile Na ions towards the percolation threshold. We would like to
emphasize that the observed increase in the exponent n is not due to the appearance of a nearly
constant loss behavior [14], which is observed at higher frequencies or lower temperatures and
characterized by an almost linear frequency-dependent conductivity with n ≈ 1.0. Percolation
theory does not either provide a direct explanation for the change of the exponent n when the
percolation threshold is approached [15]. It is well known that slightly below the percolation
threshold (x < xc) there appear percolation clusters with a fractal dimensionality below the
Euclidean dimension of the embedding medium. At xc one cluster becomes infinite but coexists
with finite-size clusters. It is often argued that cluster size limited diffusion causes the mean-
square displacement to depend on time as a power law with a fractional exponent (anomalous
diffusion). Anomalous diffusion at short times survives for x > xc, and could provide an
explanation for the frequency exponent n. However, according to critical scaling laws around
the percolation threshold the exponent of anomalous diffusion is expected to remain constant
when concentration is varied in the critical region [15]. Moreover, Monte Carlo studies on
ion diffusion have not evidenced any changes in the exponent that characterizes anomalous
diffusion in lattices with structural disorder when approaching the percolation threshold [16].

In a different but analogous problem, relaxation dynamics of mobile Lennard-Jones parti-
cles interacting with immobile particles by the same potential, Scheidler et al. have recently
found by molecular-dynamics simulations a similar increase of the exponent n and a slowing-
down of relaxation rates [17]. This result has been interpreted in terms of the enhanced
constraints on particle motion for particles interacting with immobile ones [18]. In the case of
ion diffusion we can alternatively describe these more stringent constraints on ion motion by
making use of a statistical microscopic model which takes into account the effective dimen-
sionality of the conduction path. Note that the effect of increasing the number of Na ions is
reducing the effective dimensionality of the conduction path. We do not know a priori the
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Table I – Exponent 1−n, obtained experimentally in the series Li0.5−xNaxLa0.5TiO3, and the effective
dimension d of the diffusion path, obtained by fitting the experiments according to the theory.

x 1− n d

0 0.40± 0.01 > 2
0.1 0.36± 0.02 1.8± 0.1
0.15 0.33± 0.01 1.65± 0.1
0.18 0.24± 0.02 1.2± 0.1
0.2 0.19± 0.01 0.95± 0.1

effective dimension d of the diffusion path formed by vacant A sites accessible to mobile Li
ions, when x is changed between the limiting cases x = 0 (d = 3) and x = 0.2 (d = 1). How-
ever, by comparison with theory below, we will claim that d is progressively decreasing when
more Na ions are introduced in the structure and the percolation threshold is approached.

As we stated above, the crystalline structure provides a disordered distribution of vacancies
through which ionic jumps take place and, more interestingly, the local potential each ion sees
is random. We define Ψ(r, t) as the local waiting time distribution at position r at time t, and
assume that the spatial ion jumps cannot be infinitely large, but remain finite. Thus, the mean-
square displacement of ions is bounded. This distribution depends on time due to local reloca-
tion of the surrounding ions. It is well established from experimental data, and accounted for
in different phenomenological models, that the mean waiting time diverges, which gives rise to
the observed power law frequency dependence of the conductivity [19,20]. Hence, the waiting
time distribution Ψ(r, t) has infinite mean value. This distribution can be analyzed through
its Laplace transform ψ̂(u) ≡ ∫ ∞

0
Ψ(r, t) exp[−ut]dt with the following asymptotic behavior:

ψ̂(u) � 1 − Auγ , u −→ 0, (5)

where 0 < γ < 1 and A is a real, positive constant.
The electrical relaxation of mobile ions can be related to their dynamics in the framework

of the Continuous Time Random Walk Theory [21]. Being more specific, when we apply an
electric field to the system, small dipoles form everywhere. Let us assume that those dipoles
are frozen and cannot relax until an ion migrates to their vicinity [22], and that those ions
remain there a random time given by the distribution Ψ(r, t). Moreover, we will assume that
the system contains N noninteracting ions, initially distributed with concentration c = N/V ,
V being the volume of the system. Thus, the probability of dipole surviving for at least a time
t before an ion reaches its position is given by (in the thermodynamic limit with N/V = c)

Φ(t) = exp [−c h(t)] , (6)

where h(t) is related to the probability for an ion to reach its initial position [23]. Consequently,
we only need to calculate h(t) to relate both micro and macroscopic descriptions of the system.
It can be shown that [23]

ĥ(u) =
1

u(1 − ψ̂(u))F (ψ̂(u))
− 1

u
, (7)

where ĥ(u) is the Laplace transform of h(t) and F (z) =
∑∞

k=1 zkfk is the generating function
of the probability for an ion to return to its initial position after k jumps, fk. This function
depends on the system dimension and, as we will show below, the same waiting time distribu-
tion provides different relaxation functions depending on the dimensionality of the underlying
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network where ions diffuse. The assumption of the same distribution of waiting times for
different Na concentrations can be justified as follows. Li diffusion along the percolation path
is limited by immobile La and Na ions but also by mobile Li ions. Thus when Li (mobile)
is substituted by Na (immobile), the local landscape seen by a mobile ion has not changed
substantially and thus the waiting time is expected to remain essentially unchanged, although
the dimension of the conduction path for long-range diffusion has been reduced.

Equations (6) and (7) allow us to compare the predictions of the model with the experi-
ments reported above. In the general case, when the system dimension is d, we can estimate
the behavior of h(t). The probability of return in k jumps in a d-dimensional system scales
as fk ∼ kd/2, hence F (z) ∼ [log(1/z)]d/2−1 if d < 2 and tends to a constant for d > 2. We
thus obtain

F
(
ψ̂(u)

) ∼ uγd/2−γ =⇒ h(t) ∼ tγd/2, if d < 2, (8a)

F
(
ψ̂(u)

) ∼ const =⇒ h(t) ∼ tγ , if d > 2. (8b)

In particular, h(t) can be computed analytically when d = 1 or 3, h(t) being proportional
to tγ/2 and tγ , respectively, in agreement with eqs. (8). Comparing this theory to the exper-
iments, we find that 1 − n = 0.4 for the sample with x = 0 for which a three-dimensional
diffusion process is well established (d = 3), so we set γ = 0.4. Assuming that the value of
γ is constant and related to the waiting time distribution but has nothing to do with the
dimensionality of the system, we can determine the effective dimension d of the diffusion path
along which Li ions move for the remaining samples. This is done by fitting experimental
moduli of fig. 1 to susceptibility functions built using eqs. (3), (6) and (8a) (see lines in fig. 1).
Table I shows the values of d obtained using this procedure. Interestingly, eq. (8a) predicts
1 − n = γ/2 = 0.2 for d = 1, which is, within error bars, the same as the experimental result
for the sample with x = 0.2, i.e. near the percolation threshold for Li diffusion.

In summary, we have conducted conductivity relaxation measurements, systematically, in
the series Li0.5−xNaxLa0.5TiO3 (x ≤ 0.5), where mobile Li ions can be randomly substituted
by immobile Na ions. We have found a significant slowing-down of relaxation dynamics when
increasing Na content from x = 0 towards the percolation threshold for ionic conductivity
observed at x ≈ 0.2. This result has been interpreted in terms of the reduced dimensionality
resulting of blocked pathways for Li diffusion. Li ions diffuse in a three-dimensional cubic net-
work for x = 0, while the effective dimension of the diffusion path decreases with Na content
towards the percolation threshold. We made use of a simple theoretical approach to examine
dimensionality effects on relaxation dynamics, and found the theoretical predictions to be in
excellent quantitative agreement with the experimental findings. Thus we have provided com-
plementary theoretical/experimental evidence for the slowing-down of the relaxation dynamics
of ionic conductors when the effective dimensionality of the conduction pathways is reduced.
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