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Anomalous optical absorption in a random system
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PACS. 78.30.Ly – Disordered solids.
PACS. 71.30.+h – Metal-insulator transitions and other electronic transitions.
PACS. 71.35.Aa – Frenkel excitons and self-trapped excitons.

Abstract. – Optical spectroscopy usually fails in detecting localization-delocalization (An-
derson) transitions. We report on an anomalous behavior of the absorption spectrum in a
one-dimensional lattice with long-range correlated diagonal disorder, having a power-like spec-
trum S(k) ∼ 1/kα. This type of correlations gives rise to a phase of extended states at the
band center, provided α is larger than a critical value αc. We show that for α < αc, the ab-
sorption spectrum is single-peaked, while an additional peak arises when α > αc, signaling the
occurrence of the Anderson transition. The peak is located slightly below the low-energy mo-
bility edge, providing a unique spectroscopic tool to monitor the latter. We present qualitative
arguments explaining this anomaly.

Introduction. – Quantum dynamics of quasiparticles in random media has been a subject
of extensive studies since the seminal paper by Anderson, who argued that quasiparticle states
become localized for sufficiently large disorder, thus giving rise to a localization-delocalization
transition (LDT) in three dimensions (3D) [1]. The hypothesis of single-parameter scaling,
introduced in ref. [2], proved that all eigenstates of noninteracting quasiparticles in the generic
Anderson model [1] were localized in one (1D) and two dimensions, and that the LDT does not
exist in low-dimensional systems (for recent overviews see refs. [3] and [4]). However, at the end
of the eighties and beginning of the nineties several theoretical works provided clear evidences
that short-range correlations in disorder may cause delocalization even in 1D systems [5–8].
This fact was put forward to explain the high conductivity of doped polyaniline [6] as well
as the transport properties of GaAs-AlxGa1−xAs superlattices with intentional correlated
disorder [9].
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At the end of the last decade, it was demonstrated that long-range correlations in disorder,
with no characteristic spatial length (scale-free disorder), also acts towards delocalization of
1D quasiparticle states [10]. Random sequences of correlated site energies characterized by a
power-like spectrum S(k) ∼ 1/kα with α > 0, result in extended states provided α is larger
than some critical value αc [10]. The extended states form a phase at the band center, which is
separated from localized states by two mobility edges. This theoretical prediction was experi-
mentally validated by measuring microwave transmission spectra of a single-mode waveguide
with inserted correlated scatterers [11]. The observed transmission spectra were nicely simu-
lated by the theoretical model [12], confirming the existence of a phase of delocalized states,
in spite of the underlying randomness. Peculiarities of correlated disorder had also their trace
in biophysics, explaining the long-distance charge transport in DNA sequences [13,14] as well
as the existence of a new class of level statistics [15].

Recently, we have shown that 1D disordered systems with the above-mentioned corre-
lated disorder in the site energies support Bloch-like oscillations [16]. The amplitude of the
oscillations turned out to carry information about the energy difference between the two mo-
bility edges. This finding opens the possibility to perform experiments on coherent dc charge
transport for measuring the bandwidth of the delocalized phase in disordered systems with
long-range correlated randomness. In this Letter we report on an anomaly of the linear ab-
sorption within the underlined model. We show a crossover of the absorption spectrum from
a single-peaked to a double-peaked shape when the exponent α crosses the critical value αc.
This behavior is not shared by the standard Anderson model and has never been mentioned
before. Remarkably, the additional peak of the absorption is located close to the low-energy
mobility edge, thus providing a simple spectroscopic tool to monitor it. We propose a simple
explanation of the behavior found.

Model Hamiltonian. – We consider a regular open chain of N optically active two-
level units with parallel transition dipoles, which are coupled by the resonant dipole-dipole
interaction. The corresponding Hamiltonian reads

H =
N∑

n=1

εn |n〉〈n| −
N−1∑
n=1

(
|n〉〈n + 1| + |n + 1〉〈n|

)
, (1)

where |n〉 denotes the state in which the n-th unit, having the energy εn, is excited, whereas
all the other units are in the ground state. The intersite dipole-dipole coupling is restricted
to nearest-neighbors and set to −1 over the entire lattice. ε1, ε2, . . . , εN is a stochastic long-
range correlated sequence. We generate a realization of the sequence according to the following
rule [10]:

εn = σ Cα

N/2∑
k=1

1
kα/2

cos
(

2πkn

N
+ φk

)
. (2)

Here, Cα =
√

2
( ∑N/2

k=1 k−α
)−1/2, and φ1, φ2, . . . , φN/2 are N/2 independent random phases

uniformly distributed within the interval [0, 2π]. The random distribution (2) has zero mean
〈εn〉 = 0 and a correlation function

〈εnεm〉 =
σ2C2

α

2

N/2∑
k=1

1
kα

cos
[

2πk(n − m)
N

]
, (3)

where 〈. . .〉 indicates an average over the distribution of random phases φk and N is assumed to
be even. From (3) it follows that σ = 〈ε2

n〉1/2 is the standard deviation of the distribution (2).
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Fig. 1 – Evolution of the absorption spectrum shape as a function of the correlation exponent α and
a given magnitude of disorder σ = 1. Notice the appearance of a double-peaked structure of the
absorption spectrum when α exceeds the critical value αc = 2 for the LDT to occur.

This quantity will be referred to as magnitude of disorder. The long-range nature of the site
potential correlations results from the power law dependence of the amplitudes of the Fourier
components in eq. (2). As was shown in ref. [10], a phase of extended states occurs at the
band center provided α > αc = 2 when σ = 1.

The quantity of our primary interest is the absorption spectrum, which is defined as [17]

A(E) =
1
N

〈
N∑

ν=1

Fνδ(E − Eν)

〉
, (4)

where Eν are the eigenenergies of the normalized eigenfunctions ψ
(ν)
n of the Hamiltonian (1).

The quantity Fν =
(∑N

n=1 ψ
(ν)
n

)2

is the dimensionless oscillator strength of the ν-th state.

Numerical results. – We have numerically diagonalized the Hamiltonian (1) by means of
standard methods and obtained the absorption spectrum for different values of the correlation
exponent α, considering open linear chains and setting the magnitude of disorder σ = 1.
Figure 1 shows the output of the simulations for N = 250. The results comprise an average
over 3 × 104 realizations of the disorder for each value of α. When α 	 1 the absorption
spectrum displays a single and asymmetric peak slightly below the lower band edge E = −2
of the periodic lattice (σ = 0), i.e., only the lowest states of the band contribute to the
absorption spectrum. This trend is exactly the same as that observed in 1D systems with
uncorrelated randomness. The only noticeable effect upon increasing α within the range α < 2
is an increase of the absorption bandwidth. In other words, long-range correlations in disorder
cause a stronger localization as compared to the uncorrelated case. A similar effect was found
in 1D and 3D systems with power law correlated disorder [18,19] and in 1D disorder-correlated
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Fig. 2 – A subset of eigenstates for a typical realization of the random energy potential (dashed line),
for a chain of size N = 500, magnitude of disorder σ = 1, and correlation exponent α = 3.0 (larger than
the critical value αc = 2). The baselines indicate the energies of each eigenstate. The states 1 and 3
are those which contribute to the low- and high-energy peaks of the absorption spectrum, respectively.

systems with a characteristic spatial length [20]. The latter was explained on the basis of the
exchange narrowing concept [20].

The absorption shape changes dramatically when α > αc, as seen in fig. 1: A single
peak splits into a doublet. One of the doublet components (at low energy) is located at
the bottom of the band as usual, whereas the other one (at higher energy) lies deep inside
the band. This means that the oscillator strength does not decrease monotonously from
the bottom to the center of the band, indicating strong and unexpected effects of the long-
range correlated disorder on the spatial distribution of the probability amplitude. In contrast
to the case of α < 2, the broadening of the peaks drops down on increasing α and then
saturates. Finally, notice that the low-energy tail of the low-energy peak loses its characteristic
Gaussian shape observed in uncorrelated disordered systems. All these features point out a rich
phenomenology of the model under study that cannot be accounted for within the standard
theoretical frameworks.

To get insight into the effects of scale-free disorder on the optical properties of the system,
it is useful to have a look at the eigenfunctions of the Hamiltonian (1). In fig. 2 we depict a
subset of wave functions obtained for a typical random realization of the potential landscape.
The baselines display the corresponding eigenenergies. The lowest state in fig. 2 (labelled by
1) is localized in the sense that it has a considerable amplitude within a domain of size N∗,
which is smaller than the system size N . It shows a bell-like shape and carries a large oscillator
strength F1 ∝ N∗. There are several states of such type (not shown in fig. 2), which are close
in energy to the state 1 and do not overlap with each other. They contribute to the low-energy
peak of the absorption spectrum. On increasing the energy, one observes eigenstates, like the
one labelled by 2 in fig. 2, which are more extended, as compared to the lowest one, and
present several nodes within the localization segment. The oscillator strength of such states is
smaller than F1. Consequently, they contribute to the absorption spectrum to a lesser extent.
Remarkably, going further up in energy we again find bell-like states, as the one labelled by 3 in
fig. 2, which are characterized by a large oscillator strength. Those states form the high-energy
peak of the doublet in the absorption spectrum. Finally, on approaching the center of the band
one expects the occurrence of extended states. The state 4 in fig. 2 represents an example.
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Fig. 3 – (a) The site energy landscape εn given by (2) for σ = 1 and three different values of the
correlation exponent α. The random phases have been shifted by the same amount so that φ1 = −π/2.
(b) A model in which the actual site energy landscape (dashed line) is replaced by a step-like energy
profile (solid line). The shaded regions indicate the allowed energy bands of each segment, whose
width is 4 in the chosen units.

Aiming to elucidate the anomalies found, we present a simplified model that explains the
occurrence of the optically active states deep inside the band as well as sheds light on the nature
of the LDT in the model under study. To this end, we recall that the site energy potential (2)
is given by a sum of spatial harmonics. The amplitude of each term, σCαk−α/2, decreases
upon increasing the harmonic number k. For sufficiently high values of α, the first term in
the series (2) will be dominant, while the others are considerably smaller. Consequently, the
site potential for a given realization represents a deterministic function of period N (harmonic
with k = 1), perturbed by a colored noise (harmonics with k ≥ 2). Figure 3(a) shows the site
energy landscape (2) for different values of α > 2, illustrating the statement above. Therefore,
relevant information can be obtained by analyzing the first (k = 1) term in the series (2).

As a further step of simplification, we replace the sine-like site energy potential by a step-
like one, as shown in fig. 3(b). More specifically, we take εn = ε̄ sign(N/2 − n), where ε̄ =
(2/π)σCα = 0.63σC(α) is the average value of the site energies on the left half of the system.
In doing so, we map the original lattice onto two uniform sublattices, coupled to each other
through the hoping between sites N/2 and N/2+1. The allowed energies of each decoupled sub-
lattice form a band (referred to hereafter, for the sake of clarity, as subband), ranging from ε̄−2
to ε̄+2 and from −ε̄−2 to −ε̄+2 for the left and right sublattices, respectively (see fig. 3(b)).
The absorption spectrum of such a system is expected to have two peaks caused by the tran-
sitions from the ground state to the bottom state of each subband. For σ = 1 their locations
are ε̄− 2 = −1.11 and −ε̄− 2 = −2.89. We stress that these values are in a fairly good agree-
ment with the results of exact calculations presented in fig. 1, despite both the simplification
involved and neglecting the coupling. This is a strong indication that the lowest states of the
subbands are not very much modified after switching on the interaction between sublattices.
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Fig. 4 – Log-normal plot of the transmission coefficient τ as a function of the incoming energy when
α = 4.0 and N = 3× 103. The result comprises 3× 103 realizations of disorder.

In order to understand the above features, let us consider the elements of the coupling
matrix between segments, given by [20]

Vklkr
= (−1)kl

4
N + 2

sin
(

2πkl

N + 2

)
sin

(
2πkr

N + 2

)
. (5)

Here, kl and kr, ranging from 1 to N/2, label the eigenstates of the left and right sublattices,
respectively. From (5) we find that the magnitude of coupling of the lowest state of the right
sublattice (kr = 1) to the closest state of the left one (kl = 1) is |V11| ≈ 16π2/(N +2)3, that is
much smaller than 2ε̄ = 1.78, the energy difference between the lowest band edges (the limit
of N 
 1 is implied). The magnitude of the coupling of the lowest state of the left sublattice
(kl = 1) to the central band states of the right one is about |V1kr

| ≈ 8π/(N +2)2, whereas the
energy spacing at the center of the band is 4π/(N + 2). Again, the coupling is smaller than
the energy spacing. This explains the low sensitivity of the lowest states of the subbands to
switching on the interaction between the sublattices.

Note the existence of an overlap of the two subbands shown in fig. 3(b). The overlap
region provides a pass-band for a quasiparticle. This is a crucial ingredient in understanding
the origin of the appearance of both a phase of extended states at the center of the band
and the LDT in the presence of disorder. Following the same reasoning as before, we can
conclude that upon increasing α, the role of the random phases φ2, . . . , φN/2 in the series (2)
gets smaller and smaller as compared to the leading term k = 1. Consequently, one ends up
with our simplified model to explain the phase of extended states for higher values of α.

The cutoff energies of the pass-band can be associated with the mobility edges. The actual
locations of the latter can be estimated by studying the transmission. In fig. 4 we plotted the
transmission coefficient τ as a function of the incoming energy, which was calculated for σ = 1
and α = 4 > αc = 2 (about the procedure for calculating τ see, e.g., ref. [21]). The presence of
a pass-band is clearly seen. Furthermore, we observe that the low-energy transmission cutoff,
E ≈ −1, is very close to the location of the high-energy peak in the absorption spectrum,
ε̄− 2 = −1.11. This provides a link between the second peak in the doublet of the absorption
spectrum and the low-energy mobility edge.

Conclusions. – In summary, we have studied numerically the linear optical response
of a quasiparticle moving in the long-range correlated energy landscape with a power-like
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spectrum S(k) ∼ 1/kα. We have found a crossover of the absorption lineshape from a single-
peaked profile to a doublet when varying the correlation exponent α from zero to α > αc,
where αc is the critical value for a LDT to occur in the present model; this signals the
occurrence of a localization-delocalization transition. The low-energy peak is located at the
bottom of the band, whereas the high-energy peak lies deep inside of the band, indicating the
presence of band states with large oscillator strengths. The location of the high-energy peak
is slightly below the low-energy mobility edge of the phase of extended states. This provides
a unique possibility to monitor the mobility edge spectroscopically. The crossover found is a
characteristic feature of the underlying long-range correlated random sequence and, thus, can
also be used to distinguish it from other types of correlations.
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