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Abstract. We find the eract localized rolutims of a class of nonlinear DGdc equations permrbed 
by a paint interaction patential, rhat is,  any sharply peaked potential approaching the 8-functioo 
limit. A detsiled analysis of the existence Aditions of thme localimd solutions is carried out 
We show that our results agree with non-relativistic predictions when bath the selfsoupling and 
the point interaction potential are weak. Lower bounds to the size of the localized solutims am 
present e d. 

One of the most important questions about soliton-type waves is their stability under the 
influence of a general perturbation. For nonlinear scalar fields, the stability problem has 
been completely solved by Shatah and Strauss [I, 21. The Shatah-Strauss formalism has 
been extended to study the stability~of spinor fields satisfying the nonlinear Dirac equation 
(NLDE) under special perturbations [3.4], namely dilations and amplitude transformations. 
In addition, extensive numerical work has been devoted to this problem [5-71. 

Up to now, however, the behaviour of IocaIized solutions of the NLDE under the influence 
of external potentials remains somewhat unexplored. A basic question is to discover whether 
the potential can desImy these localized solutions. The aim of this work is to provide a 
first study towards clarifying this point. We consider the NWE with vector self-interaction 
plus a short-ranged electrostatic-like potential (the timelike component of a Lorentz 4- 
vector) in one space dimension. There are no exact solutions in three dimensions even for 
the unperturbed NLDE, so that analytical solutions in one dimension assume an additional 
importance. The situation we are dealing with is equivalent to a modified Thining model [8], 
in which the influence of a external potential is included. In order to obtain a solvable model, 
we will replace the actual extemalpotential by a point interaction potential, i.e. any sharply 
peaked potential which approachs the S-function limit (a more rigorous definition can be 
found in [9J). Within limitations-some of them will be discussed below-the S-function 
potential is a good candidate to replace more structured and more complex short-ranged 
potentials [lo]. ~ 

Hence we aim to find the localized solutions and the existence conditions of these 
solutions of the following NLDE (we use units such that fi = c = I): 

(1) 

where the exact form of the external potential Au(x)  will be specified later, A being the 
coupling constant and u ( x )  a shape function. Without losing validity, we assume a self- 
interaction with 0 < g < r. a and are 2 x 2 Hermitian and anticommuting, traceless 
matrices with square unity, acting upon the two-componknt wavefunction Y. 
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( :x ) a 
at 

i-Y(x,t)= -ia-+Bm+Av(x)-2g@iY @ ( x , t )  

~~ 



3864 F Dom fnguez-Adame 

As was pointed out by Sutherland and Mattis [ll], some ambiguities appear taking the 
limit u(x)  + S(x) at the outset in the linear Dmc equation (g = O), because potentials 
of different shapes which appmach the a-function limit (zero width and constant area) give 
wavefunctions reaching different values at the discontinuity point. The origin of these 
ambiguities was clariiied by McKellar and Stephenson [12], and it is related to the fact 
that the Dirac equation is linear rather than quadratic in momentum. Due to this Iinearity 
in momentum, the wavefunction itself must be discontinous at x = 0 in order to account 
the singularity of the potential term. However, the product 8(x)e(x) ,  where 0 is the step 
function, is not well defined in a strict distribution-theory sense, so there exists arbitrariness 
regarding the definition of point interaction potentials in the linear equation. Moreover, it 
is quite clear that the same anomaly will occur in the NLDE. 

The first task then is to define a point interaction potential for the NLDE avoiding these 
difficulties. To do this, we suppose that u(x) = U,(*) is any positive, sharply peaked 
function at .x = 0, satisfying the condition 

d.Xu,(x) = 1 (2) 

E being a small positive parameter. In such a potential, the wavefunction varies rapidly and 
the dominant terms in (1) are 

a+ 
ax 

- ia- + Au,(x) N 0 1x1 < E .  (3) 

We note that (3) becomes independent of the self-interaction, so essentially the definition 
of the point interaction potential is the same as in the linear Dm equation. As pointed out 
in [12] and [13], equation (3) admits an iterative Neumann solution of the form 

I 
(4) 

@ being a Dyson-type ordering operator. Taldng the Limits x + E ,  xo + --E and E + O+ 
along with (Z), the following boundary condition is reached 

w@+) = exp(-icxyh)\v(o-). (5) 

We should emphasize that the appropriate boundary condition at x = 0 becomes independent 
of how the &function limit is taken, so we have overcome the above-mentioned ambiguities. 
Also, due to the periodicity in h with period 2n of this boundary condition, we may restrict 
ourselves to the range -n c h < P .  

In order to find the solutions of (1) one must specify a particular representation for the 
Dmc mahices. We set a = uy and fl  = uz, the U being the Pauli matrices. Bound states 
are solutions of the form 

W(x, f )  = exp(-ior)@&) (6) 

with o real and @u(x) vanishing in a suitable way as 1x1 + CO. It is convenient to express 
the upper and lower components of $&) by means of two real functions q(x)  and 19(x), 



Localized solutions of 1D nonlinear Dirac equations 

In terms of these two functions the boundary conditions now read 
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It is worth mentioning that f f  (x)-the relative phase between the two components of T/&- 
jumps at x = 0, whereas q2(x)--the charge densily-remains continuous at that point. 

From (1) and (7) we obtain 

dff/dx =mcos2ff - o + A u ( x ) . - 2 g q 2  

dqldx = mq sin 279. 

We observe that the boundary conditions (8) and (9) may also be obtained by integrating 
(11) and (12) around x = 0, respectively. Tbis ensures that the boundary conditions we 
have found are consistent and well defined. 

Solutions of (11) and (12) satisfying the specified boundary conditions read, for x # 0, 

where sgn(x) = ~ 0 ( x )  -~0(-x). Here p = +(ma - 0 2 ) ' j 2  must be real to obtain localized 
solutions, and 

Note. that y becomes positive (negative) for repulsive (attractive) point interaction potentials 
because we have chosen -z c A < z. 

We impose the normalization condition (conserved charge) 

thus leading to 

where we have used (15). Equation (17) can be rewritten in a more compact fashion as 

o = m cos(g - A). (18) 

Since the left-hand side of (17) is positive, the condition 

O<sin (g -h )  (19) 
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must be satisEed in order to obtain bound-state solutions. In terms of the two coupling 
constants, g and A, the parameter y is simply given by 

Insofar as I tanhzl < 1, a further existence condition must be also fulElled: 

COS(g - A) 6 COS A. (21) 

It is interesting to note that the solutions we have found reduce to well-known results 
for the unperturbed NLDE [14, 151 in the limit A + 0. In such a limiting case, equation (1) 
presents localized solutions for all values of g E (0, n), representing m l y  bound states. As 
we see from (19) and (21). this is not the case whenever the point interaction potential is 
introduced, since existence conditions appear. To gain a proper understanding of the above 
results, we must study attractive and repulsive point interaction potentials separately. 

Let us start by considering attractive point interaction potentials, for which -n < A < 0. 
The linear Dm equation for such a potential suppolts a single bound state with energy 
Ebmd = mcos A, as pointed out by Domlnguez-Adame and MaciA [13]. The situation is no 
longer the same in the case of the NLDE. Condition (19) requires thatg + IAl must be in the 
first two quadrants of the unit circle. For these values of the coupling constants condition 
(21) is always valid, so equation (1) presents localized solutions whenever 

(22) g + IAl < n. 
On increasing the effective coupling constant g+ [AI the eigenvalue o decreases, as seen from 
(18). At the criticuf coupling g+lAl = n one Ends that o = -m. Stronger couplings cause 
no confined solutions at all. This situation is very similar to the appearance of supercritical 
effects in the linear Dmc equation induced by a strong elecnostatic-like potential. In such 
a case, it is well known that the bound states dives into the negativeenergy sea as the 
coupling constant exceeds a certain critical value. It is interesting to mention that recently 
it has been speculated that a new phase or a soliton-lie shucture in QED is produced when 
nonlinear effects in electrodynamics become important and supercritical effects may take 
place 1161. 

The occurrence of condition (22) is in contrast to the results found in the non-relativistic 
version of equation (1). that is. the nonlinear Schrodinger equation ("E) plus a &function 
potential. This problem has been recently solved by Pushkarov and Atana~ov [17], who 
demonstrated that there is no condition for the existence of localized solutions of the NLSE 
with an attractive &function potential, provided that the self-coupling is also attractive. 
Notice that (19) reduces to g + [AI > 0 in the limit of weak coupling, which trivially holds, 
in accordance to the non-relativistic prediction. In addition, since y is negative, the charge 
density q2 has only one maximum, at the point where the interaction potential is located, 

Now we consider repulsive point interaction potentials, so the coupling constant satisfies 
0 < A < n (for A = K the point inleraction potential becomes transparent to all energies 
and is immaterial as far as its effects on the wavefunction are concerned 1131.) The linear 
D m c  equation always presents a single bound state with energy Ebovnd = -m cos A, as 
shown in [131. However, this statement does not remain hue for the NLDE. Due to (21), 
now condition (19) must be fulfilled along with 

aS OCCUIS for the NLSE [17]. 

g > 2A. (23) 
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The last inequality is also valid for the NLSE with a repulsive potential (see equation (17) 
of 1171). For weak coupliig, (21) now leads to g~ >.A, which also directly follows from 
(23). Hence in the case of weak coupling there, exists only one existence condition given 
by (23). in perfect agreement to that found in the NLSE 1171. In the case of the NLDE 
with a repulsive point interaction potential ~y is positive and qz has two maxima situated 
symmehically around the point:interaction potential, in contrast to the attractive case. The 
location of the two maxima are given by x,, = k y / m  sin(g -A). 

Having discussed the existence conditions. of localized solutions of the NLDE under 
the ,influence of point interaction potentials, we should study the validity of ow initial 
approximations. As mentioned above, we replaced the actual sha-ranged potential by a 
point interaction potential. It is clear that this~replacement requires the range R of the 
extemal potential to be much smaller than the size of the soliton-type solution., In order to 
get an estimation of this size we calculate 

The second moment of the charge density is to be computed numerically from (14) for 
different values of the coupling constants. Nervertheless, it is possible to find analytical 
lower bounds, following a similar procedure to that given by Stubbe [181 for the unperturbed 
NLDE. Multiplying (12) by x q  after integration yields 

-22m[mdxx$sin29=l m 

where we have used the normalization con@tion (16). Then by, the CauchySchwah 
inequality 

, ,  

On adding (26) and (27) and using (25) we obtain 

The integral appearing in (28) may be calculated analytically. Thus the condition (x2) >> R2 
holds provided that 

(&)2>> 1- ( + ( ~ ) c o s z ( ~ - ; ) , .  

In summary, we have found analytical solutions of the NLDE with vector self-coupling 
perturbed by an electrostatic-lie point interaction potential. In contrast to what occurs in 
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the unpembed NLDE, we have demonstrated that conditions for the existence of localized 
solutions arise. These conditions reduce, in the weak coupling limit, to those found in 
dealing with the analogous problem for the NLSE. We believe that this work is a first step in 
order to obtain a complete understanding of the interaction between Dmc solitons and point- 
lie potentials. Unlike other well-known nonlinear wave equarions (nonlinear Schriidinger 
and nonlinear Klein-Gordon models in almost all their versions), the propagation of Dm 
solitons in disordered media has been ignored (for a review of the sfale of the urr of 
research on nonlinear wave propagation in disordered systems, see [19]). Frequently, the 
disorder is modelled by a lattice of delta-like impurities with random positions or strengths. 
Hence it would be interesting to examine the solutions of the NLDE under the iduence of a 
random array of point interaction potentials. This regard could provide a generalization of 
certain onedimensional nuclear models (see [ZO] and references therein), in which quarks 
are assumed to obey the linear Duac equation for an array of 6-function potentials,'in order 
to explore nonlinear effects in the binding energy of the nucleus. 
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