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Transport in random quantum dot superlattices
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We present a model based on the two-dimensional transfer matrix formalism to calculate
single-electron states in a random wide-gap semiconductor quantum dot superlattice. With a simple
disorder model both the random arrangement of quantum dots~configurational disorder! and the
spatial inhomogeneities of their shape~morphological disorder! are considered. The model correctly
describes channel mixing and broadening of allowed energy bands due to elastic electron scattering
by disorder. ©2002 American Institute of Physics.@DOI: 10.1063/1.1503393#
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I. INTRODUCTION

The latest advances in nanotechnology make it poss
to grow quantum dot~QD! superlattices.1,2 In view of the
analogy between atoms and QDs, it is expected that stro
confined levels overlap when QDs are closely packed.
though this analogy cannot be complete since carriers in Q
are influenced by phonons, defects, and interface states
resulting collective states will depend on the arrangemen
QDs. In this sense, QD arrays grown by molecular be
epitaxy can be completely random,3,4 partially regimented1,2

or may be regularly stacked~high regimentation!.5 Electronic
states in highly regimented QDs are adequately descr
within the envelope-function approximation by the three
mensional Kronig–Penney model. The occurrence of m
bands has been established.6 However, the lack of periodicity
in random QDs superlattices requires different approach

In the present work we present a two-dimensio
effective-mass model to study the influence of scattering
disorder on electron transport through random QD supe
tices. We use the discretized Ben Daniel–Duke equation,
boundary conditions are discussed. The scattering solut
are calculated by means of the transfer-matrix method fo
arbitrary QD superlattice. The model is worked out in a tw
dimensional space for computational limitations, although
will be clear that generalization to three dimensions is rat
straightforward. Finally, we present the numerical results
the conductance of random arrays of coupled QDs and
main conclusions of the work.

II. MODEL

We consider the Daniel–Duke equation for the elect
envelope functionx(y,z) with a constant effective massm*
at theG valley. In order to calculate the single electron stat
the whole sample is divided into three regions. Regions I
III are the contacts, while region II contains the array left~I!
and right ~III ! contacts and the random QDs~II !. Electron
scattering by disorder takes place in the region III. Figur
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shows a schematic view of the three spatial regions. Us
the Daniel–Duke equation and a mesh with lattice spaci
ay and az in the Y and Z directions, and definingty

[2\2/(2m* ay
2) andtz[2\2/(2m* az

2), we obtain the fol-
lowing discrete effective-mass equation:

tz~xn11,m1xn21,m!1ty~xn,m111xn,m21!

1~Un,m22tz22ty!xn,m5Exn,m . ~1!

The potential termUn,m in Eq. ~1! is given by the
conduction-band edge energy at the point (nay ,maz). There-
fore, disorder enters the equation via this diagonal te
Contacts are characterized by flatband conditions,Un,m50,
in the absence of applied electric field. The effects of
applied field can easily be taken into account within t
present approach by adding a linearly varying potential
the form Un,m(F)52eFmaz in the region II,F being the
applied field.

III. TRANSFER MATRIX FORMALISM

In order to solve the tight-binding Eq.~1! we use the
transfer matrix method based on the solutions calculated
each slice of the system along theZ direction.7 For the sake
of simplicity, we definefn (n50,1, . . . ,N11) as a vector
with the componentsfn

(m)[xn,m (m51, . . . ,M ). Here M
andN11 are the number of mesh divisions in theY andZ
directions, respectively. Thus, Eq.~1! can be rewritten in a
more compact form

S fn21

fn
D 5S tz

21~EI2Mn! 2I
I O D S fn

fn11
D , ~2!

where I and O are theM3M identity and null matrices,
respectively. The matrixMn splits into the formMn5Rn

1Bn . The diagonal elements of the symmetric tridiagon
matrix Rn are (Rn)mm5Un,m22tz22ty while off-diagonal
elements equalty . The matrixBn depends on the boundar
conditions to be specified later.

We can obtain the expression for the envelope funct
amplitudes in the left contact as a function of the amplitud
in the right one
6 © 2002 American Institute of Physics
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S f0

f1
D 5T (N) S fN

fN11
D ,

T (N)[ )
n51

N F tz
21~EI2Mn! 2I

I O G , ~3!

whereT (N) is the transfer matrix for the heterostructure.

IV. SCATTERING SOLUTIONS

The envelope functions within the contacts are de
mined by the boundary conditions. We use open bound
conditions in theZ direction and periodic on each slice in th
Y direction. Consequently, all elements ofRn vanish except
(Rn)1M5(Rn)M15ty . The open boundary condition resul
in plane wave solutions in theZ direction, while the periodic
boundary condition yields an energy quantization in theY
direction. This quantization results in a number of transve
channels equal to the number of points in the transve
mesh direction. We assume perfect leads so thatUn,m is a
constant within the contacts. In this case the voltage o
drops across the region II. Applying the periodic bounda
condition xn,15xn,M11 , a particular solution of Eq.~1! is
given by

xn,m
l 5

1

ANl

expS i
2p l

M
mDexp~ ik lazn!

1(
j 51

M

r̂ l j

1

ANj

expS i
2p j

M
mD

3exp~2 ik jazn!, ~m,n!PI, ~4a!

at the left contact while at the right contact we have

xn,m
l 5(

j 51

M

t̂ l j

1

ANj

expS i
2p j

M
mDexp~ ik jazn!,

~m,n!PIII, ~4b!

where the normalization constant is chosen to ensure tha
the propagatingmodes carry the same current

FIG. 1. Schematic view of the sample. Regions I and III are the electr
leads of the sample~contacts! and electrons undergo scattering proces
only at region II.
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Nj5
1

ay
2

sin2S 2p j

M D1
1

az
2

sin2~kjaz! ~4c!

and

kj5
1

az
cos21H 1

2tz
FE22tyS cos

2p j

M
21D G11J . ~4d!

These expressions remain valid for an applied electric fielF
provided E is replaced byE1eV in Eq. ~4d!, where V
5FL is the applied voltage andL is the length of region II.

The matricesr̂ and t̂ in Eqs. ~4! are thereflectionand
transmissionmatrices and they account for the channelmix-

ing due to scattering. Thus,r̂ i j represents the probability am
plitude for an electron in channeli to be reflected into the
channelj. Note that the solution within region II is not re
quired to obtainr̂ and t̂ . All scattering properties of the
system are described by thet̂ and r̂ which mix the different
channels. In particular, we can calculate the conductan
From the Landauer–Bu¨ttiker formalism,8 the zero tempera-
ture two-leads multichannel conductance can be calcula
using de Fisher–Lee formula9

G5
2e2

h
Tr~ t̂ † t̂ !, ~5!

where Tr stands for the trace of the matrix.

V. CONFIGURATIONAL AND MORPHOLOGICAL
DISORDER

In order to describe epitaxially random QD superlattic
we consider they are arranged on a nonregular lattice~con-
figurational disorder!. There also exists another type of di
order that is due to inhomogeneities of QD shapes~morpho-
logical disorder!. To simulate both types of disorder w
consider a superlattice of rectangular QDs. Sizes of QDs
their displacements from the regular lattice sites are take
be random~see Fig. 2!. For the sake of simplicity, we assum
that the confining band offsetDEc is the same for every QD
This is not a serious shortcoming since spatial inhomoge
ities of the conduction-band offset and fluctuations of Q
shapes yield essentially the same results. In addition,
model could easily deal with inhomogeneousDEc if further
improvements are required.

l
s

FIG. 2. Schematic view of configurational and morphological disorder.
the former case the QD shift its position and amountdr while its nominal
sizedy3dz remains unchanged. In the latter case, the center of the QD d
not change while its size along theZ axis increases or decreases an amo
dz.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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For the sake of clarity we consider the effects of co
figurational and morphological disorder separately. Confi
rational disorder means that each QD is shifted from its re
lar position bydr5(dy,dz) while its sizedy3dz remains
unchanged~see left panel of Fig. 2!. Here dy and dz are
random uncorrelated variables with zero mean and dist
uted according to box probability functions of widthWy and
Wz , respectively. To simulate the change of the shape~mor-
phological disorder! we change the size of a QD in theZ
direction an amountdz while its center stays on a regula
lattice ~see right panel of Fig. 2!. Here dz is a uniformly
distributed variable with zero mean and widthWz .

VI. RESULTS

We have performed several numerical calculations in
der to study the influence of both configurational and m
phological disorder over the conductance of random Q
superlattices made of GaAs–InxGa12xAs heterojunctions. To
elucidate the effects of randomness, we have consid
regimented and disordered 434 QD superlattices. The con
duction band offset,DEc , is taken to be 70% of the differ
ence of the gapsDEg in a strained GaAs–InxGa12xAs het-
erojunction, whereDEg51.45x eV. For definiteness we se
x50.35 and consequentlyDEc50.35 eV. In addition, since
we are mainly interested in the effects of the coupling
tween the QDs via the high band gap semiconductor rathe
the confined levels of individual QD, we have takenm*
50.067 in units of the free electron mass, corresponding
the embedding semiconductor. Let us mention that the mo
can be easily generalized to include a different effective m
inside the QDs. The size of the regimented QDs was take
be dy3dz with dy58.0 nm anddz51.6 nm. The separation
between centers in the regimented superlattice is 14.0
6.8 nm along theY andZ axes, respectively. The number
mesh points along the two spatial directions areM550 and
N11539.

As typical results of our simulations, Fig. 3 shows t

FIG. 3. Conductance vs energy for a two-dimensional ordered superla
of 434 QDs made of InxGa12xAs in GaAs~solid line! at zero bias. The inse
shows an enlarged view of the lower conductance peak of the second
band.
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conductance versus energy measured from the conduc
band edge in InxGa12xAs, in the absence of the electric field
The coupling between QDs splits the energy levels and
sults in the formation of minibands.6 From Fig. 3 we observe
the occurrence of two well-defined minibands below the b
rier when disorder is absent, in agreement with previo
results.6 Each band is characterized by four main condu
tance peaks and each peak is the convolution of four clo
peaks that cannot be resolved except in the low energy
gion of the higher miniband~see inset of Fig. 3!. These four
peaks merge into a single broader one due to the large s
ing between QDs along theY direction. Thus, the coupling
between neighbor QDs is weaker along this direction (uty

u,utzu), finally resulting in a smaller splitting of the QD
levels. This merging effect is smaller in the higher miniba
~see inset of Fig. 3! because of a higher overlap of the env
lope functions, which manifests itself via the broadening
the four main peaks.

Transport through the miniband changes as soon as s
degree of randomness is considered in the model. Mean
and separation between QDs as well as their fluctuations
ues strongly depend on the growth conditions~e.g., growth
temperature! and subsequent thermal treatments.4 As an ex-
ample, Fig. 4 shows the conductance for two different
grees of morphological disorder,Wz50.4 nm ~dashed line!
andWz50.8 nm~dotted line!. In addition, Fig. 5 displays the
conductance for two different degrees of configurational d
order, Wy52.0 nm andWz51.2 nm ~dotted line!, and Wy

52.0 nm andWz50 nm ~dashed line!. All the curves for the
disordered samples were obtained by averaging over 100
alizations of the disorder. In both figures the solid line c
responds to the regimented QD superlattice shown in Fig

As the main point, we notice that electronic states in
random QD superlattice behave like those in amorphous
terials, in the sense that with increase in disorder the cond
tance strongly decreases while the allowed energies broa

ce

ni-
FIG. 4. Conductance vs energy for a two-dimensional superlattice of 434
QDs with morphological disorder:Wz50.4 nm ~dashed line! andWz50.8
nm ~dotted line!. Results are compared to the conductance of the orde
superlattice shown in Fig. 3~solid line!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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due to the fluctuations of QD energy levels. It is clear fro
Fig. 4 that the gap disappears in the case of strong morp
logical disorder as resonant tunneling is suppressed du
large energy spacing between levels of different QDs. Ho
ever, the effects of configurational disorder on the ba
structure are less profound, in the sense that broadenin
negligible for realistic values of the parameters, although
decrease of the conductance is still observed~see Fig. 5!.
Notice that the conductance reaches its maximum at the
ergy of the individual QD quasilevels, as expected.

Concerning the effects of a uniform applied elect
field, we have computed the conductance for a given Fe
energy as a function of the applied biasV. Two cases,Ef

50.17 eV andEf50.27 eV, corresponding to the bottom
the two minibands, has been considered. The reason for
choice is to observe the behavior of the conductance w
the miniband goes down and crosses the Fermi level as
applied voltage increases. Figure 6 shows the conducta
versus applied bias for regimented as well as random
superlattices in the two cases, where voltage was assum
drop linearly across region II. Regimented QD superlatti
present three well-defined negativedG/dV regions due to
resonant tunneling through the QDs. The observed peak
valley ratios are worse for disordered samples.

VII. CONCLUSIONS

In summary, we have presented a method to study e
tron transport through random QD superlattices. The met
is based on the transfer matrix formalism applied to the d
crete Ben Daniel–Duke Hamiltonian for the electron en
lope function. A careful analysis of the scattering solutio
under appropriate boundary conditions~periodic in the lat-
eral direction and open along the longitudinal one! allows us
to obtain the two-channel conductance. For regimented Q

FIG. 5. Conductance vs energy for a two-dimensional superlattice of 434
QDs with configurational disorder:Wy52.0 nm andWz51.2 nm ~dotted
line!, andWy52.0 nm andWz50 nm ~dashed lines!. Results are compared
to the conductance of the ordered superlattice shown in Fig. 3~solid line!.
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~regular QD superlattices! the conductance shows clear si
natures of the miniband structure, as previously predicted
a Kronig–Penney model for strongly coupled QDs.6 How-
ever, the novelty of the model is that it allows for descripti
of random QD superlattices. Two models of disorder~con-
figurational and morphological! have been studied. Disorde
reduces the conductance due to Anderson localization of
envelope functions and broadens the allowed energy ba
This broadening is negligible for configurational disord
The characteristicG–V presents several regions of negati
dG/dV, although the peak-to-valley ratios strongly decrea
with disorder.
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