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Transport in random quantum dot superlattices
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We present a model based on the two-dimensional transfer matrix formalism to calculate
single-electron states in a random wide-gap semiconductor quantum dot superlattice. With a simple
disorder model both the random arrangement of quantum (dotsfigurational disord¢rand the

spatial inhomogeneities of their shapeorphological disorderare considered. The model correctly
describes channel mixing and broadening of allowed energy bands due to elastic electron scattering
by disorder. ©2002 American Institute of Physic§DOI: 10.1063/1.1503393

I. INTRODUCTION shows a schematic view of the three spatial regions. Using

The latest advances in nanotechnology make it pos:sibl'([ahe Daniel-Duke equation and a mesh with lattice spacings

to grow quantum dotQD) superlattices:? In view of the Gy anZd 2 *mzthe Y ind 22 d'rei“%”s’ and defining,
o = —fh°/(2m*ay) andt,=—A</(2m*a;), we obtain the fol-
analogy between atoms and QDs, it is expected that strongly . . y ‘ o
) wing discrete effective-mass equation:
confined levels overlap when QDs are closely packed. Al-

though this analogy cannot be complete since carriers in QDS(Xn+1mt Xn-1m) T ty(Xnm+1+ Xnm-1)
are influenced by phonons, defects, and interface states, the (U —2t—2t —E o
resulting collective states will depend on the arrangement of (Unm 2= 2ty) Xnm=Exnm-
QDs. In this sense, QD arrays grown by molecular beanThe potential termU, ., in Eq. (1) is given by the
epitaxy can be completely randotfi partially regimentet?  conduction-band edge energy at the poima(,ma,). There-
or may be regularly stacketiigh regimentation® Electronic ~ fore, disorder enters the equation via this diagonal term.
states in highly regimented QDs are adequately describe@ontacts are characterized by flatband conditidhs,,=0,
within the envelope-function approximation by the three di-in the absence of applied electric field. The effects of the
mensional Kronig—Penney model. The occurrence of miniapplied field can easily be taken into account within the
bands has been establistfadowever, the lack of periodicity present approach by adding a linearly varying potential of
in random QDs superlattices requires different approaches.the formU, ,(F)=—eFmg, in the region II,F being the

In the present work we present a two-dimensionalapplied field.
effective-mass model to study the influence of scattering by
disorder on electron transport through random QD superlat-
tices. We use the discretized Ben Daniel-Duke equation, anly- TRANSFER MATRIX FORMALISM
boundary conditions are discussed. The scattering solutions |n order to solve the tight-binding Eql) we use the

are calculated by means of the transfer-matrix method for afansfer matrix method based on the solutions calculated for
arbitrary QD superlattice. The model is worked out in & two-each slice of the system along tHedirection’ For the sake
dimensional space for computational limitations, although itof simplicity, we define, (n=0,1, ... N+1) as a vector
will be clear that generalization to three dimensions is rathefith the componentsp™=y, » (M=1, ... M). Here M
straightforward. Finally, we present the numerical results forand N+ 1 are the number of mesh divisions in tMeand Z

the conductance of random arrays of coupled QDs and thgirections, respectively. Thus, E€L) can be rewritten in a

main conclusions of the work. more compact form
(«bnl) _(tzl<Ez—Mn> - ( #n ) o
Il. MODEL b, T O\ briy)’

We consider the Daniel-Duke equation for the electron,hare 7 and © are theM x M identity and null matrices
envelope functiory(y,z) with a constant effective mass* respectively. The matrix\(,, splits into the formM,=7R,,
at thel" valley. In order to calculate the single electron states,, g The diagonal elements of the symmetric tridiagonal
the whole sample is divided into three regions. Regions | anﬁinatr;ix R, are (Ry)mm=Un m— 2t,— 2t, while off-diagonal
n n/mm n,m z y

Il are the contacts, while region Il contains the array €ft  5loments equal,. The matrix53, depends on the boundary
and right(lll) contacts and the random QDH). Electron conditions to be specified later.

scattering by disorder takes place in the region lll. Figure 1 \yie can obtain the expression for the envelope function

amplitudes in the left contact as a function of the amplitudes
dElectronic mail: igcuesta@valbuena.fis.ucm.es in the right one
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the former case the QD shift its position and amodniwhile its nominal
sized, X d, remains unchanged. In the latter case, the center of the QD does

L . __not change while its size along tieaxis increases or decreases an amount
FIG. 1. Schematic view of the sample. Regions | and Il are the electncallS

leads of the samplécontact$ and electrons undergo scattering processes
only at region II.

Contact Contact

oo
/\/]:izsinz(vq-rJ +izsin2(kjaz) (40)
P é ay a;
(=7 d
1 Dn1 an
7—(N)=ﬁ [tzl(EI_Mn) -z - kj=a£cos_1[%[E—2ty coszMﬂ—l 1}, (4d
Azl T o\ z z

_ _ These expressions remain valid for an applied electric field
where7™ is the transfer matrix for the heterostructure. provided E is replaced byE+eV in Eq. (4d), where V

=FL is the applied voltage and is the length of region II.

The matricesr andt in Eqgs. (4) are thereflectionand
IV. SCATTERING SOLUTIONS transmissiormatrices and they account for the chanméx-

ing due to scattering. Thufs-,j represents the probability am-

The envelope functions within the contacts are detery iy de for an electron in channélto be reflected into the

mine.d. by t_he bOUF‘dafY conditiong. We use open bo,unda%hannelj. Note that the solution within region Il is not re-
conditions in theZ direction and periodic on each slice inthe . N - . .
quired to obtainr andt. All scattering properties of the

Y direction. Consequently, all elements®&f, vanish except , A -~ . i
(Ra)1m=(Ra)m1=t,. The open boundary condition resuilts system are described by theandr which mix the different

in plane wave solutions in th& direction, while the periodic channels. In particular, we can galcglate the conductance.
boundary condition yields an energy quantization in the From the Landauer—gitiker formalism, the zero tempera-
direction. This quantization results in a number of transversdUré two-leads multichannel conductance can be calculated
channels equal to the number of points in the transverskSing de Fisher—Lee formila
mesh direction. We assume perfect leads so that, is a 2e2
constant within the contacts. In this case the voltage only ~G=——Tr(t ), 5
drops across the region Il. Applying the periodic boundary
condition Xni=XnM+1, & particu|ar solution of Eq(]_) is where Tr stands for the trace of the matrix.
given by

V. CONFIGURATIONAL AND MORPHOLOGICAL

X'n,m=iexy{i 2Vqﬂm)exp(ihazn) DISORDER
\/W' In order to describe epitaxially random QD superlattices,
Mo 2] we consider they are arranged on a nonregular lattioe-
+ Z rj——=—=exp i Wm) figurational disorder There also exists another type of dis-
=1 N order that is due to inhomogeneities of QD shafmerpho-
xexp(—ikan), (mn)el, (43 logical disordey. To simulate both types of disorder we
consider a superlattice of rectangular QDs. Sizes of QDs and
at the left contact while at the right contact we have their displacements from the regular lattice sites are taken to
M 1 27} be randon{sge_ Fig. 2 For the sake of simplicity, we assume
X = > f”. —exp(i —m) explik;an), that the confining band offs&E. is the same for every QD.
R \//\_/, M This is not a serious shortcoming since spatial inhomogene-
ities of the conduction-band offset and fluctuations of QDs
(m,n) elll, (4b)

shapes yield essentially the same results. In addition, our
where the normalization constant is chosen to ensure that athodel could easily deal with inhomogeneddk. if further
the propagatingmodes carry the same current improvements are required.

Downloaded 10 Oct 2002 to 147.96.21.232. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



4488 J. Appl. Phys., Vol. 92, No. 8, 15 October 2002 Gomez et al.

4F 5 — T T T T 1

X ¢¢l i --- W,=0.4nm

3 N\
LI,

—————— -
bl ¥ SRy

Id
~

o

1
020 025 030
E (eV)

E (eV)

FIG. 3. Conductance vs energy for a two-dimensional ordered superlattice

of 4xX4 QDs made of IgGa, _,As in GaAs(solid line) at zero bias. The inset  FIG. 4. Conductance vs energy for a two-dimensional superlattice<df 4

shows an enlarged view of the lower conductance peak of the second min@Ds with morphological disordedV,=0.4 nm(dashed ling and W,=0.8

band. nm (dotted ling. Results are compared to the conductance of the ordered
superlattice shown in Fig. &olid line).

For the sake of clarity we consider the effects of con-
figurational and morphological disorder separately. Configu-

tional disord that h OD is shifted f " conductance versus energy measured from the conduction
rationa’ disorder means that eac Q IS shitted Trom 11S regup g edge in IgGa _,As, in the absence of the electric field.
lar position by or = (dy,dz) while its sized,xd, remains

The coupling between QDs splits the energy levels and re-
unchangedsee left panel of Fig. )2 Here 8y and 6z are HpTing betw Q - gy eV

d lated iabl ith d dist _bsults in the formation of minibandsErom Fig. 3 we observe
random uncorrelated variables with zero mean and distfbg, o occyrrence of two well-defined minibands below the bar-
uted according to box probability functions of widit, and

W iively. To simulate the ch fth rier when disorder is absent, in agreement with previous
2, TESPEClively. 10 simufate the change of the sh_(amer- results® Each band is characterized by four main conduc-
phological disorderwe change the size of a QD in tie

direct 5¢ while it ter st | tance peaks and each peak is the convolution of four closer
rection an amoun & w e IS Center stays on a reguiar peaks that cannot be resolved except in the low energy re-
lattice (see right panel of Fig.)2 Here 6 is a uniformly

_ . . ) gion of the higher miniban@see inset of Fig. 8 These four
distributed variable with zero mean and widt . peaks merge into a single broader one due to the large spac-

ing between QDs along th¥ direction. Thus, the coupling
between neighbor QDs is weaker along this directi¢ty (
We have performed several numerical calculations in or{<|t,|), finally resulting in a smaller splitting of the QD
der to study the influence of both configurational and mordevels. This merging effect is smaller in the higher miniband
phological disorder over the conductance of random QDsgsee inset of Fig. Bbecause of a higher overlap of the enve-
superlattices made of GaAsBa _,As heterojunctions. To lope functions, which manifests itself via the broadening of
elucidate the effects of randomness, we have consideratie four main peaks.
regimented and disordered<4 QD superlattices. The con- Transport through the miniband changes as soon as some
duction band offsetAE_, is taken to be 70% of the differ- degree of randomness is considered in the model. Mean size
ence of the gapaAEg in a strained GaAs—-UGa,_,As het-  and separation between QDs as well as their fluctuations val-
erojunction, whereAEy=1.45¢ eV. For definiteness we set ues strongly depend on the growth conditidesy., growth
x=0.35 and consequentlfE,=0.35 eV. In addition, since temperatureand subsequent thermal treatmehtss an ex-
we are mainly interested in the effects of the coupling be-ample, Fig. 4 shows the conductance for two different de-
tween the QDs via the high band gap semiconductor rather igrees of morphological disordew,=0.4 nm(dashed ling
the confined levels of individual QD, we have takerf andW,=0.8 nm(dotted ling. In addition, Fig. 5 displays the
=0.067 in units of the free electron mass, corresponding t@onductance for two different degrees of configurational dis-
the embedding semiconductor. Let us mention that the moderder, W,=2.0 nm andwW,=1.2 nm (dotted ling, and W,
can be easily generalized to include a different effective mass-2.0 nm and/V,=0 nm(dashed ling All the curves for the
inside the QDs. The size of the regimented QDs was taken tdisordered samples were obtained by averaging over 100 re-
be d,xd, with d,=8.0 nm andd,= 1.6 nm. The separation alizations of the disorder. In both figures the solid line cor-
between centers in the regimented superlattice is 14.0 amgésponds to the regimented QD superlattice shown in Fig. 3.
6.8 nm along ther andZ axes, respectively. The number of As the main point, we notice that electronic states in a
mesh points along the two spatial directions Wte=50 and random QD superlattice behave like those in amorphous ma-
N+1=39. terials, in the sense that with increase in disorder the conduc-
As typical results of our simulations, Fig. 3 shows thetance strongly decreases while the allowed energies broaden

VI. RESULTS
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FIG. 6. Conductance vs applied bias for a two-dimensional ordered super-
FIG. 5. Conductance vs energy for a two-dimensional superlattice<df 4 |attice of 4<4 QDs, made of IfGa _,As in GaAs(solid line), when the
QDs with configurational disordeiV,=2.0 nm andW,=1.2 nm(dotted  incoming electron energy i§;=0.17 eV (lower panel and E;=0.27 eV
line), andW,=2.0 nm andW,=0 nm (dashed linegs Results are compared (upper panel Results are compared to randord 4t superlattices with con-
to the conductance of the ordered superlattice shown in Figol&l line). figurational disorder folW,=2.0 nm andW,= 1.2 nm(dotted ling or with
morphological disorder withW,=0.8 nm(dashed ling

due to the fluctuations of QD energy levels. It is clear from

Fig. 4 that the gap disappears in the case of strong morphé[egular QD supgr_lattlcesxhe conductance.shows clegr SI9-
logical disorder as resonant tunneling is suppressed due {batures of the miniband structure, as previously predicted by

. . a Kronig—Penney model for strongly coupled QDslow-
large energy spacing between levels of different QDS. How ver, the novelty of the model is that it allows for description

ever, the effects of configurational disorder on the band : .
structure are less profound, in the sense that broadening I% random QD superlattices. Two models of disordzon-

negligible for realistic values of the parameters, although th re(;]riggntﬁleacn:n?%rtgzzlg%C};htivin%i(:goiufglc?. aDtI'csn(;r((j)?rthe
decrease of the conductance is still obserysee Fig. 5. u u u Izall

Notice that the conductance reaches its maximum at the e nvelope functions and broadens the allowed energy bands.

ergy of the individual QD quasilevels, as expected. his broadening is negligible for configurational disorder.

Concerning the effects of a uniform applied electricThe characteristiG—V presents several regions of negative

field, we have computed the conductance for a given Ferm(iiG/dV’ although the peak-to-valley ratios strongly decrease

energy as a function of the applied biss Two casesE; with disorder.
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