JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 6 8 FEBRUARY 2000

Absorption spectra of dipolar Frenkel excitons in two-dimensional lattices
with configurational disorder: Long-range interaction and motional
narrowing effects
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We present results of numerical simulations of optical absorption line shape of Frenkel excitons in
two-dimensional disordered lattices. Disorder is generated by Gaussian randomness in the molecular
positions. The intersite interaction is considered to be of dipole origin, including coupling to far
neighbors. Results of simulations are compared with those obtained in the frame of the
nearest-neighbor approximation, showing remarkable differences in the absorption line shape. The
motional narrowing effect is found to be essentially different from that previously reported for the
case of diagonal disorder as well as for that produced by randomness in nearest-neighbor hopping
integrals. © 2000 American Institute of Physids$S0021-9606)0)53105-5

I. INTRODUCTION tions but keep the long-range dipole—dipole terms as well,

A number of physical phenomena in insulating and mc’_showing that these terms and configurational disorder
strongly affect the exciton absorption line shape.

lecular crystals involve the concept of Frenkel excitons for ) ! )

their explanatiort. In past years, the framework of one- The rem_alnder of_the Paper s org_amz:_ad as follows. The

dimensional(1D) exciton states was successfully applied tomOdel l\;"? \fllv'” be dgalln?hwn;w IS d?SC”b?d meec. III' Iln fec-

treating optical properties of linear moleculhaggregates of we briefly overview the basic formafism Tor caicuiating
;he one-exciton absorption line shape. Section IV presents

cyanine dyedqsee Refs. 2 and 3 and references therein fo ) . . .
review). Optical dynamics of excitations in quasi-two- the effe(_:ts of Iong-rgnge d|po!e—d|pole coupling on energ_etu:
dimensional molecular systems such as Langmuir—BIodgeﬁnd optical properties of excitons for an ordered 2D lattice,

films comprised of cyanine dyes was also interpreted ineither infinite or finite. Section V deals with an analytical

terms of two-dimensional2D) Frenkel exciton states. approach as well as the numerical simulations of the exciton
Very recently, a 2D model was used for studying the 'time_absorption lines for configurationally disordered 2D lattices.
dependent energy transfer in a Sheibe aggréyswitary We summarize our findings in Sec. VI. The Appendix pro-

exciton waves have been predicted inTBand 2D Frenkel vides thg details of tr_]e analytical treatment.of pepuhanu_es of
lattices!® the motional narrowing effect due to configurational disor-

The nearest-neighboNN) approximation is often der.
adopted in analytical and numerical studies of the optical
dynamics of Frenkel excitons, independently of the system, MODEL HAMILTONIAN
dimensionality. It was found that, even in the 1D geometry, . ) ]
coupling to far neighbors has nonperturbative effects on the We consider a system ol=NXN optically active,
exciton eigenenergies and eigenstates close to the bottom &¥0-level molecules, occupying positionsaround a regular
well as the top of the exciton barid*~'"these peculiarities 2D square lattice with spacing unity. In th_e ab_sence of _dl_ag-
are also reflected in the optical response and transport proﬁﬂal disorder, the effe_ctlve Frenkel Hamiltonian describing
erties of 1D Frenkel excitons. It is then rather reasonable t§iS System can be written as follows:
expect similar or even larger effects for 2D Frenkel systems.

In this paper, we focus on 2D Frenkel excitons in ran- H=2, Jom A}a. (1)
dom molecular systems, assuming that disorder arises from m
randomness in positions of molecules around regular latticklere,a] anda,, create and annihilate an electronic excitation
points and neglecting the static inhomogeneous offset energyf moleculen, respectively. The coupling,,(n#m) is the
of molecules imposed by the surrounding host med{din  intersite interaction of dipole origin between centersndm
agonal disordér We do not restrict ourselves to NN interac- (J,n=0). Hereafter, we assume that transition dipole mo-

ments are perpendicular to the plane of the system and that
aE| N . their magnitudes are the same. Thus, the intersite interaction
ectronic mail: adame@valbuena.fis.ucm.es
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J>0, the state coupled to the light is that at the top of theEq. (3) can be rewritten in the form

exciton band. Rigorously speaking, the optical dynamics of 1 .

excitons in such a case can be substantially affectgd by the |(E)= —Re{f dte HES G (1), (4)
coupling to phonon&® In this paper, we do not aim to TN 0 n

present a complete description of the problem but mainl)ﬁere we have introduced the Green funct®p(t) accord-
focus our attention on the effects of coupling to far nelghborqn t019

on the one-exciton absorption spectrum of 2D Frenkel exci- .

tons, just to demonstrate the relevance of the long-range tail Gn(t)=(vada,e™'"D|vac). 5
of the dipole—dipole interaction.

. . . ) This function obeys the equation of motion
The source of disorder lies in the interaction terigg,

caused by randomness in the molecular positions, the distri- . d B
bution of each one being assumed Gaussian '& "(t)_%: InmGrm(1)- ©)
1 £2 Initial conditions reads,,(0)=1 and free-end boundary con-
P (&)= 272 exp ~ 252)’ 2 ditions are used. The microscopic equation of motion is a 2D

_ _ discrete Schrdinger-like equation on a lattice, and standard
whereg,=r,—n andn=(n,,ny) with 1<n,, n,)<N being  nymerical techniques may be applied to obtain the solution.
integers. For the sake of simplicity, the same standard deviaance the equation of motion is solved, the line shape is
tion o along both directions has been taken, but differentoynd from Eq.(4).
values can be considered as well in our model. We do not  por the infinite lattice, both definition@®) and(4) give a
assume any correlation in the fluctuations of different posiself-averaged quantity. For a finite lattice, one should make
tiOI’lS, so that the distribution function of a realization of dis- the average of Eq$3) and(4) over the ensemble of realiza-
order is represented by the direct product of single Gaussianfons of disorder or, in other words, over the probability dis-
). tribution given byIl,P(&,) with P(&,) defined in(2).

Ill. ONE-EXCITON ABSORPTION SPECTRUM

Having presented our model, we now describe twolV- ORDERED LATTICE
methods we have used to calculate the absorption spectra. |nfinite lattice
First, the absorption line shapéE) of a one-exciton transi-
tion we will be interested in for this paper can be obtained as
follows. Let us consider the total dipole moment operatorVeré molecules are placed over regular lattice points
D= En(a +a,), where the dipole moment of each center IS—O) This task is instructive in order to compare our model
taken to be unity. Here we are restricting ourselves to thé“”th those based on the NN approximation. The microscopic
case of systems whose length is much smaller than the Optgquatlon of motior(6) reduces in this case to
cal wavelength. Denote the eigenvectors and eigenvalues of
the HamiltonianH by |k) and E,, respectively. Then, the
one-exciton absorption spectrum is given by

In this section, we discuss the case of an infinite lattice

i 5;C J% o |3 Gn(t), )
1 wherem andn run over the regular lattice sites, excluding
I(E):/T/E |(k|D|vag|?8(E—E,), (3)  singular terms(m#n). It can be solved by means of the
. Fourier transformation
where the statévac) stands for the exciton vacuum. In prac-

tice, one considers a broadenédfunction, replacing the Gy(t)= 2 ek NG (1), (8)
proper & function by a Lorentzian distribution of half-width keBzZ
« where BZ refers to the first Brillouin zone: w<k,, k,
w 1 <. The calculation is straightforward and gives the follow-
S(E—Ey)— 2+(E Ek)z ing result:
L G, (t)=exp —iEqt), 9)

The dissipation parameter mimics the always present re-
laxation. whereE,=Ey_o and

The use of Eq(3) for calculations of the one-exciton 1
absorption spectrum implies diagonalization of the Hamil- JE —3e'k n (10
tonian(1). Huber and Chintj proposed an alternativ@me- n#0

domain method for obtaining this spectrum based on thejs just the exciton energy spectrum. After inserti@gin (4),
exciton Green function. It consists of the following. Using the one-exciton absorption spectrum is found to consist of a
the representation single line centered at the energy

EOZ\]‘/C.:.;, (11)

where for brevity we have introduced the notation

a

— Refwdt e—at+i(E—Ek)t,
a?+(E—Ey)? 0
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the infinite lattice and the main line of thed XN lattice
scales as~-N~! (see inset of Fig. Jlas deduced froni14).
Besides the main line, several almost equidistant and
well-defined satellite peaks appear in the low-energy side of
the spectra. We relate these peaks to transitions to lower
exciton states having oscillator strength smaller than the
main transition(to the top band statgesimilar to what occurs
in a finite linear chair(see, for instance, Ref. 14The rela-
tive intensities of peaks are in a good correspondence to the
sequence 1/(2—1)? with n=1,2,..., as occurs for a linear
chain as well. FoiN=280, the sequence of peaks is fitted
surprisingly well by the expressidii4) for the infinite lattice
by replacingk in the first Brillouin zone byk=[7zv,/(N
+1),mvy/(N+1)], wherev,, v,=1,2,..N. In particular,
the first three peaks in Fig. 1 have energies 8.76, 8.33, and
FIG. 1. Absorption spectra in arbitrary units for finite ordered 2D lattices of 7.88 in order of decreasing intensity. The energies, calcu-
different sizes when dipole—dipole interaction between all sites is taken int ; ;
account. Curves are cglculateg by means of the Green function method wi(t}witi;j {;_Og)] Er?d((lf )S)bf):) :?\ll(ggo(yg ’pvgéaa:stothbeefg I:SOS;N Ig 9273 e;Sn d
J=1 and «=0.05 and have equal area. Inset shows the energy Ahift 1 A G ’ s o Eee
=E,—E as a function of the lateral size. 7.80, respectively. These findings are unambiguous evidence
that the corresponding 2D exciton states, can be approxi-
mately expressed as products of the 1D exciton states

I(E)

0
N+1

fFEﬁr=4§(|/2)B(I/2). (12) _ 2 M2

n sin . I=Xy (15

Here, {(s)==,_,n"° is the Riemann’s zeta function and
B(s)==/_o(—1)"(2n+1)" % is the analytical continuation despite the fact that the 2D exciton energy specttlif is
of the Dirichlet series>?® Thus, F,;=4&(3/2) not parabolic and thus the motion of excitons alonandy
X B(3/2)=9.03,... It is worth mentioning that this energy is directions is not independent of each other. It should be no-
rather different from that obtained in the NN approximation.ticed that such a correspondence becomes, however, worse
This approximation considers only the four terms with=1  as the lattice size decreases. Observing the spectra presented
in the sum appearing ifL2), the energy of the main line thus in Fig. 1, one can identify more satellites with very low
being 4J instead of 9.03. Therefore, we are led to the con- intensities which are visible nevertheless. Fitting their ener-
clusion that the NN approximation largely underestimategyies in the same manner as above showed that they can be
the value of the blueshift. related approximately to the set$,4) and (1,6). Since the

The exact exciton spectru(d0) near the top of the band oscillator strengths of 1D exciton states with=4,6 are
also strongly differs from that in the NN approximation rigorously equal to zero, we believe that the 2D states now

given by discussed are composed of the 1D statee1 and of the
Ek=2.J[cos(kx)+Cos(ky)]:4J—Jk2. (13) fs;?rtneesr.vy=4 and »,=6 mixed perturbatively with the
As it was found in Ref. 13, folk|<1 Eq.(10) reduces to
Ex=9.031—27J|k|, (14)

i.e., the exact exciton enerdy, scales linearly ak|, con- V. DISORDERED LATTICE

trary to the parabolic law for the NN model. Having discussed the regular lattice, we now turn to dis-

ordered lattice$o+0) to analyze the effect of randomness in
molecular positions on the width and shift of the absorption
line. Our task is to calculate the averaged Green function

Once the infinite ordered lattice has been discussed, w&G,)), where brackets denote the average over realizations of
turn our attention to the finite one. We have solved numeridisorder. The coherent potential approximatiors widely
cally the microscopic equation of motiof6) using the used for this aim. It has been successfully applied for de-
fourth-order Runge—Kutta method. The calculations havescribing the optical characteristics of Frenkel excitons in the
been carried out choosinb=1 anda=0.05. The maximum presence of randomness in the transition enetyfé<3as
integration time was 150 in these units and the number ofvell as for theoretical studies of coupled spin systems with
time steps was 12 000. Figure 1 shows the absorption spectrandomness in the intersite coupliffg?®We develop below
for different system sizes, indicated on each curve. We noa simpler approach that looks like an effective medium ap-
tice that the main absorption line is blueshifted upon increasproximation (EMA), which will successfully estimate the
ing the lattice size. For the largest lattit@0x80), it is cen-  shift of the optical absorption line as a function of the degree
tered atE=8.76, rather close to the main line in an infinite of disorder, and use the concept of motional narrowirig
lattice (Eqg=9.03). The energy shift between the main line of estimate the line width.

B. Finite lattice
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A. Shift of the absorption spectra The subject of our interest is precisely the matri)

The EMA approach simply consists of making the aver-and our task is to evaluate the following magnitude:

age over the realizations of disorder directly in E@). and 2 _ 2\ 2

replacing  (Sp|rn—rm| 2Gm(1)) by (Swlra=rnl %) e =T ) = H e 22
X(Gp(t)). It might be correct for relatively small fluctua- The diagonal partg, , determines the value of the typical
tions of molecular positionér<1), namely when small val-  fluctuation of the eigenenerdy, due to disorder. For per-
ues of|r,—r| are not very probable. In doing so, we obtain turbative magnitudes of disorder, it has a direct relationship
the following equation of motion for the averaged Greenwith the inhomogeneous width of the corresponding exciton

function: state. The perturbative approach is valid provided the off-
d diagonal termsry,, , describing the exciton level mixing, are
ia<G(t)>=J]—‘eﬁ(G(t)>, (169 smaller than the corresponding energy differende&s

—Ey/|. From the viewpoint of the exciton optical response,
where the subscript has been dropped as the average @fupling of the optically active exciton stake=0=(0,0) to
G,(t) becomes independent of position. For brevity, we havehe others is of major importance. Therefore, the equality

defined ok,0= Eo— Ek,, where the statk; =(27/N,0) is adjacent to
1 the top state, separates the ranges of perturbative and non-
feﬁfz <—> ) (17) perturbative magnitudes of the degree of disorder.
m o\ |rm—rol® Assuming the smallness of the standard deviaticand

Notice that botfr, andr, fluctuate around regular positions. 1€ long-wave limifk|<1—the case g’f our interest—one can
To determineF,; we assume that,, does not fluctuate but 2'Tive at the following formula fow,, (see the Appendix
r, fluctuates around the origin with deviatieio- along each ~ for further details:

direction. In addition, under the assumption of small degree 25200254
of disorder (rg|<1), one can expanft,,—rq~* in Taylor o'ik,ZT (23
series. We then obtain

Feti=Fat+9Fs0%+ Z2F,0%+ O(a®). (189  The N~ scaling obtained is similar to that for 1D exciton

system with diagonal disorder and is known as exchange or
motional narrowing effect’ meaning/\-times reducing the
variance of disorder distribution for a collectiyexcitonig
E(o)—E(o=0)=J(45.810%+497.600%), (19 state as compared to the seeding vaftfe What is most

¢ infinite 2D latti ith dipole—dinole int tion. Not important, thes-dependence, same as for 1D systémis,
oran infinite attice with dipole—dipo’e Interaction. INote sufficiently different: hereaik, is proportional too®, while

that the obtained scaling does not depend on the dimensior]gér diagonal disorder the corresponding magnitude scales as
ality since it yields the same quadratiedependence of the g P g mag

absorption line shift reported in Ref. 14 for 1D configura- o?.*" The latter behavior also appears when one simulates

tionally disordered exciton systems and differs from the aI_off—dlagonal disorder by uncorrelated distributions of the

_ . . . 0
most linear behavior found for 2D exciton systems with di_ngarest neighbor .hoppmg integrafs? The reason for the
agonal disorde?® difference found lies in the fact that, despite assun@ndo

be an uncorrelated stochastic variable for different sites
_ ' hopping integrals appear to be correlated. Indeed, let us con-
B. Broadening of the absorption spectra sider for the sake of simplicity these integrals for the nearest

In order to get insight into the broadening of the absorp1€ighborsJ,. g, andJ,_ g, (jg/=1), and look at their fluc-
tion spectra due to disorder, one should calculate the meafuations created by the deviationmth site up to linear terms
square deviation of the exciton eigenenergies as well as th &. Evidently, 6, ¢ ,=39- &,, while 6J,_g,=—39- &,
matrix of the exciton mode coupling. For the sake of sim-just confirming our claim. Due to this feature, they almost
plicity, let us consider a square lattice and assume perioditor exactly atk=k’, see the Appendjxcancel each other in
boundary conditions so that, in the absence of disordef{@H)w' When summing over neighboring sites in the long
Bloch plane waves represent the proper eigenfunctions of théavelength limitlk|, [k'|<1. This is why the major contribu-
Hamiltonian(1). Now, we rewrite the Hamiltoniaft) in the  tion to (6H)w appears to be quadratic in

Using the value ofF; given in (12), the shift of the optical
line is found to be

Bloch wave representation For nonperturbative magnitudes of the disordegy:
(k#k') mixes the exciton states. This yields exciton local-

H 1 1 H H H H * — * *

H= E.ala,+ SH)weralar: | 20 ization within 2D regions of typical sizeV* =N* XN
; KKK % (TF)w-auci 20 smaller thanA//=NX N and subsequently affects the exciton

optical response. For a perfect lattice, only the state with

wherek ranges over the first Brillouin zon&, is given by k=0 is coupled to the light and carries the entire exciton

Eqg. (1 X S .
a.(10), and oscillator strength, which is the'=NXxN times larger than
_ E 1 _ 1 that for an isolated molecule. Being mixed with ottiron-
(OH) e TNE Im—n+&,—&° |m—n|® radiative states(k#0), the radiative state loses a part of the

' oscillator strength due to its spreading over the nonradiative
x gl (k-m=k"-n) (21)  ones. Thus, an effective numh&* <A/, known as the num-
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ber of coherently bound molecules for 1D excitéhsge-

places the system siz& as the enhancement factor of the 5 020.08
oscillator strength of the localized exciton states. It reflects XMMMMWMWMM

the typical number of sites on which the localized exciton
A::o.m

wave functions have a significant magnitude or, in other
words, the number of molecules within a typical localization
area’'2 Accordingly, the inhomogeneous width of the opti-
cal exciton line will also be subject to renormalization and 6=0.02
can now be estimated from,, replacing\V with A* .2’ 0=0.02

In our estimate of\* we will follow a simple rule, first
proposed in Ref. 33, that works fairly well for 1D exciton
systems. This rule simply consists of applying the relation | )| =001 .
ok0=Eo~Ex,, providing the limit of validity of the pertur- 73 a0 1 48‘2 s v e 8‘47
bative approach, to a typical localization afdaxX N*, i.e., ' ' ' E ’ '
replacing in this equality\V with N*. It will give us the
self-consistent equation for the size of the coherent ared&lG. 2. Absorption spectra in arbitrary units for:280 disordered lattices
First, let us look forA* in the NN approximation. Taking when dipole—dipole interaction between all sites is taken into account.

. . Curves are calculated by diagonalization of the Hamiltonian Wil and
Into account Eqs(l?’) and (23) and following the above R=0.001 and comprise the results of 2000 averages. The inset shows the

I(E)

rules, we then find low-energy satellite peaks far=0.02.
27"
/\/*Zw, (249
a in Eq. (4) to observe line broadening which, in turn, dras-
and consequently tically increases the computation time. Hence, we have di-
2520, 112 630 rectly diagonalized the Hamiltoniafl) to find the exciton
NN (W JUZZ?JOA. (24  absorption spectra. We then use E).to find the absorption

line shape, where we replace®{E—E,) by (1R)6(R/2
Equations(24a and(24b) provide estimates of the oscillator —|E—E,|), 6 being the Heaviside step function aRdthe
strength and the standard deviation of the absorption line atpectral resolutioh? Different values of the degree of disor-
nonperturbative magnitudes of disorder. We stress that thder o have been studied and each spectrum shown in the
scaling of o> o* dramatically differs from that found for figures below corresponds to an average over 2000 realiza-
2D exciton systems with diagonal disorder, for whiefj,,  tions of disorder. In all the simulations, we have chosen
xg. % =1 andR=0.001.

Turning now to the case of long-range interactions and  Figure 2 shows the absorption spectra ox20 disor-
making estimates as above, we arrive at a surprising resultered lattices when dipole—dipole interaction between all
namely, that the quantitjy* we are looking for falls out of sites is taken into account for different values of the degree
the equation determining it. This occurs because Bgtand  of disorder. Notice that the main line shifts towards the high-
o scale asN Y2 Finally, we get an estimaterf;  energy region of the spectrum on increasing the degree of
=27/(2520)Y*=0.89 for the magnitude of the degree of disorder. In addition, the main line is rapidly broadened upon
disorder, which separates the perturbative and nonperturbéncreasing the degree of disorder, in agreement with the ana-
tive ranges ofo. Within the perturbative ranges<ofg), lytical results shown in the previous section. Besides the
exciton eigenfunctions spread over the whole lattice so thanain absorption line, several satellite peaks appear in the
N*=N. The inhomogeneous width of exciton levels is still low-energy side of the spectra, resembling those found in
given by o . At nonperturbative magnitudes of disorder ordered lattices. As an example, the inset of Fig. 2 presents
(o=0{R), Eq. (23 fails since for its derivation, the condi- the satellite peaks closest to the main absorption line for
tion o<1 has been use@ee the Appendix Thereforeo 0=0.02. As expected, these satellite peaks are also shifted to
should be recalculated far= o} but it is not the case we the high-energy region and broadened due to disorder. The
will be dealing with. invariance of relative positions of the main peak and satel-
lites (they match those for an ordered lattice of the same size,
see Fig. 1 is explained by the low magnitudes ofy
<0.016, being unable to mix the exciton states of perfect

For the magnitudes of the degree of disorder0.08 lattice. Notice once more that the conditions of our simula-
and lattice size\'=20x20 we used in our simulations of the tions correspond to the perturbative limit of disorder. Unfor-
absorption spectra of disordered lattices, the correspondininately, higher values of make the occurrence of small
motionally reduced values arg, - <<0.016. Thus, despite the values of the nearest-neighbor distance highly probable, thus
seeding, disorder is rather strofipe standard deviation of leading to huge hopping integrals and blowup of numerics.
the nearest-neighbor hopping integral for the 2D case is For comparison, Fig. 3 presents the behavior of the ab-
given by o;=60J and for 0=0.08 is equal to 0.48 the sorption spectra for 2020 lattices upon increasing the de-
quantity o, drops to perturbative value@inlike the 1D  gree of disordewr within the NN approximation. The main
casé®. This requires tiny values of the dissipation parametetine again is blueshifted and broadened upon increasing the

C. Numerical simulation
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FIG. 3. Absorption spectra in arbitrary units for’2@0 disordered lattices |G, 4, shift in energy of the main absorption line versushen dipole—
within the NN approximation. Curves are calculated by diagonalization ofginole interaction between different sites is taken into account. Solid line is

the Hamiltonian withJ=1 andR=0.001 and comprise the results of 2000 tne result of quadratic fit. Dashed and dotted lines show EMA prediction up
averages. The inset shows the low-energy satellite peaks=f6r02. to orderso? and o, respectively.

degree of disorder. For<0.04, its width(at a fixedo) is  for a fixed o smaller than 0.04, the FWHM is almost the
almost the same as for the case when the full dipole—dipoleame in both models but the curves clearly start to separate
interaction is taken into account, but it is larger for higherfor higher values of the degree of disorder. We have found
values of the degree of disorder. An extra broadening of thenhat for the model of full dipolar coupling, the FWHM can
absorption line occurs, indicating that the disorder starts the accurately fitted over the entire range of the degree of
mix the exciton states which results in their localizationdisorder considered in this work by a power law” with
within an area of size smaller than the lattice size. Now, thea=25 andy=1.79. The exponent 1.79 is rather close to the
number V* <\ determines the inhomogeneous line width.value of 2 expected from our theoretical estimates. On the
This point will be discussed in more detail below. The maincontrary, the FWHM of the main absorption line obtained
line is accompanied by satellite peaks, as the inset of Fig. @ithin the NN approximation does not fit a single power law,
shows foro=0.02. The locations of all of them perfectly at it follows from Fig. §a). The exponenty=1.93 found for
follow Eg. (13), in which k should be taken of the forrk  small degree of disorddir<<0.04) is close to 2, but it turns
=[mv /(N+1),7v,/(N+1)] with »,,»,=1,2,..N. For  out to be roughly 3.78 for stronger disorder>0.04). The
instance, forc=0.02, the highest satellite peaks correspondvalue y=3.78 is again in good agreement with our theoreti-
to the set(1,3), (1,5, (1,7), ... . Besides, there exists a num- cal estimatg24b) for nonperturbative magnitudes of the de-
ber of satellite peaks with even, or v, indices whose 1D gree of disorder.

counterpart has vanishing oscillator strength and, conse- We conjectured above that, within the NN approxima-
quently, they present very low intensitgee, e.g., the satel- tion, disorder starts to mix the exciton statessat0.04 re-

lite peak closest t&=3.9, whose indices arél,2)]. Such  sulting in their localization. To validate this assertion we

peaks are not present in ordered lattices with the NN intersitBave also calculated the inverse participation réiiRR) of
coupling. Hence, we relate their appearance to mixing of the

optically active statesi(, ,= 1) with the dark oneswith v, ,
even caused by disorder.

Figure 4 compares the shift of the main line obtained 10’ ——1  Sloped - |
! . .. . . ® Nearest—neighbor e
numerically with the EMA prediction given if19), where = 107 » Dipole—dipole T,
we observe a nonlinear shift upon increasing the degree of I t "5
disorder. We see that the EMA works very well fo<0.03 £ 107% . o " Giopez
but underestimates the value of the shift for strong disorder. 58 a)
This is to be expected since we assumed thetas small to 11%0
arrive at Eq.(19). Additional terms in the expansiai8) as
a function of powers ofo? provide positive contributions 107" 4 .
leading to a larger shift. & .
Finally, we have also obtained the full width at half 107 % . 1 : -
maximum (FWHM) of the main absorption line to analyze 10° b)
its dependence on the degree of disorder. The results for both 0.01 c 0.10

models, when the dipole—dipole interaction between all sites

is taken into account as well as within the NN approxima-F'C: 5: (3 FWHM of the main absorption line ar) IPR of the uppermost
state versugr. Curves are calculated by diagonalization of the Hamiltonian

tion, are shown in Fig. &), where the value of the spec;ral with J=1 and comprise the results of 2000 averages. The dashed lines
resolution has been subtracted. As was already mentioneepresent the theoretical slopes 2 and 4.
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the uppermost exciton stat¥,,, according to the standard We will be interested in the contribution tmik, up to the
definition IPR=3,|W¥,,|* where the wave function is as- same order with respect ta The corresponding expressions
sumed to be properly normalizedee, e.g., Ref. 34 For  read

delocalized states, spreading uniformly over the 2D system,

the IPR behaves likbl~? upon increasing the lateral sihe J ei(k-m=k’-n)

On the contrary, localized states exhibit much higher values:  (5H) =~ ———3

the higher the value, the smaller the localization length. The N [m=n|

results are shown in Fig.(B). For the model of dipolar cou-

pling between all sites, the IPR is approximately constant X
over the entire range of. Its value is close to the theoretical

expectation 0.0025 for delocalized states ink20 systems. (Ala)
Within the NN approximation, the IPR suddenly increases

for ¢>>0.04, meaning that the exciton starts to be localizedand consequently

in perfect agreement with our previous conjecture.

3 15, 35, 315,
_Exmn"_gxmn_ 1_6xmn+ Esxmn )

J\2 ei(k-mfk’<n) efi(k-pfk’-q)
(6H); =(—) 3 3
VI. SUMMARY k' AN o Im-n]® & |p—q

Coupling to far neighbors has pronounced effects on the 9 45 105

. . . 2 3
one-exciton 'a}bsor'ptlon spectrg of perfect 2D Iatyces. In j[he X menqu— gxmnqu+ 1—6anqu
case of positive sign of the dipole—dipole coupling consid-
ered in the present paper, the absorption spectrum consists of 225 , ,
the main peak and almost equidistantly placed redshifted sat- + axmnqu)- (Alb)

ellites of decreasing intensities. These satellites reflects a lin-

ear dispersion Iaw of the exact 2D exciton energy S.peCtrunE:arrying out the average in EGAL) and keeping all the
unlike the parabolic law of the NN problem. The main peak :
necessary terms, we obtaithe calculations are rather te-

IS b!uesh|fted approx_lmatg ly twice as .compared. to that a rISEiious but straightforward, so that we only quote the final
ing in the NN approximation. Introducing Gaussian conflgu-resum

rational disorder yields a blueshift of the main peak of the

exciton absorption spectrum, obeying a polynomial biqua-

_ 2, 225 4
dratic law with respect to the degree of configurational dis- ((H)wer)=[93Qs(K) 0"+ Z°Q7(K) "] Gy (A2a)
order as well as broadening all the peaks.

The motional narrowing effect in the case of Gaussian 93252 36J%0"*

configurational disorder sufficiently differs from that of di- <(5H)Ek'>: T|P5(k)+P§(k/)|2_ N
agonal disorder. Being similar to the latter in the scaling law » 4
with respect to the number of sites-(V~?), the former is < [Qe(k)+ O (k') 2+ 1530
different in the dependence on the degree of disosgiv- ° ° N
ing rise to a parabolic behavior, contrary to the linear one

\12
found for diagonal disorder. As a result, motionally reduced X[Qi1d(0) +Quolk+k")]
disorder appears to have perturbative magnitudes, even for 22571254 2700254
relatively large values of the standard deviation of molecular + TR(KK’)Jr N
positions.

X[Ps(k)+Pg (k") ][P7 (k) +P4(k")]
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APPENDIX: ESTIMATE OF THE MOTIONAL
NARROWING EFFECT IN THE PRESENCE OF

meik-m
CONFIGURATIONAL DISORDER Pl(k):E |m| ' (A3b)
In what follows, we assume the smallness of the stan- m
dard deviationo and expand the quantity in parentheses in 5
Eqg. (21) in the Taylor series up to fourth order with respect R(k k’)=2 (m-n) (eik'm+eik"m)(e‘k'“+e“(/'“)
to ’ & [m[“[n[’ .

(A3c)

_Z(m_n)'(gm_gn) i |§m_§n|2

xmn_ 2 2 . .
|m—n| [m—n| For the magnitude of interest, we get
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, 9%0? o 360701
Oy = N |P5(k)+P5(k )l - N
254

X[ Qs(k)+ Qs(k’ 2+—15
5(k)+Qs(k")] N
2,4

22
X[Q1o(0)+ Quok+k') >+ o R(kK')

2700%0* . .
+ 7 [Ps(k)+Ps(k")[P7 (k) +Po(k")].

(A4)

From the viewpoint of our problem, the domain of im-
portance of the wave numbeksand k'’ is represented by
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