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Absorption spectra of dipolar Frenkel excitons in two-dimensional lattices
with configurational disorder: Long-range interaction and motional
narrowing effects
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We present results of numerical simulations of optical absorption line shape of Frenkel excitons in
two-dimensional disordered lattices. Disorder is generated by Gaussian randomness in the molecular
positions. The intersite interaction is considered to be of dipole origin, including coupling to far
neighbors. Results of simulations are compared with those obtained in the frame of the
nearest-neighbor approximation, showing remarkable differences in the absorption line shape. The
motional narrowing effect is found to be essentially different from that previously reported for the
case of diagonal disorder as well as for that produced by randomness in nearest-neighbor hopping
integrals. © 2000 American Institute of Physics.@S0021-9606~00!53105-5#
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I. INTRODUCTION

A number of physical phenomena in insulating and m
lecular crystals involve the concept of Frenkel excitons
their explanation.1 In past years, the framework of one
dimensional~1D! exciton states was successfully applied
treating optical properties of linear molecularJ-aggregates of
cyanine dyes~see Refs. 2 and 3 and references therein
review!. Optical dynamics of excitations in quasi-two
dimensional molecular systems such as Langmuir–Blod
films comprised of cyanine dyes was also interpreted
terms of two-dimensional~2D! Frenkel exciton states.4–7

Very recently, a 2D model was used for studying the tim
dependent energy transfer in a Sheibe aggregate.8 Solitary
exciton waves have been predicted in 1D9–12and 2D Frenkel
lattices.13

The nearest-neighbor~NN! approximation is often
adopted in analytical and numerical studies of the opt
dynamics of Frenkel excitons, independently of the syst
dimensionality. It was found that, even in the 1D geomet
coupling to far neighbors has nonperturbative effects on
exciton eigenenergies and eigenstates close to the botto
well as the top of the exciton band;5,14–17these peculiarities
are also reflected in the optical response and transport p
erties of 1D Frenkel excitons. It is then rather reasonable
expect similar or even larger effects for 2D Frenkel syste

In this paper, we focus on 2D Frenkel excitons in ra
dom molecular systems, assuming that disorder arises f
randomness in positions of molecules around regular lat
points and neglecting the static inhomogeneous offset en
of molecules imposed by the surrounding host medium~di-
agonal disorder!. We do not restrict ourselves to NN intera

a!Electronic mail: adame@valbuena.fis.ucm.es
b!On leave from All-Russian Research Center ‘‘Vavilov State Optical In

tute,’’ Saint Petersburg, Russia.
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tions but keep the long-range dipole–dipole terms as w
showing that these terms and configurational disor
strongly affect the exciton absorption line shape.

The remainder of the paper is organized as follows. T
model we will be dealing with is described in Sec. II. In Se
III we briefly overview the basic formalism for calculatin
the one-exciton absorption line shape. Section IV prese
the effects of long-range dipole–dipole coupling on energe
and optical properties of excitons for an ordered 2D latti
either infinite or finite. Section V deals with an analytic
approach as well as the numerical simulations of the exc
absorption lines for configurationally disordered 2D lattice
We summarize our findings in Sec. VI. The Appendix pr
vides the details of the analytical treatment of peculiarities
the motional narrowing effect due to configurational diso
der.

II. MODEL HAMILTONIAN

We consider a system ofN5N3N optically active,
two-level molecules, occupying positionsr n around a regular
2D square lattice with spacing unity. In the absence of di
onal disorder, the effective Frenkel Hamiltonian describi
this system can be written as follows:

H5(
mn

Jnm an
†am . ~1!

Here,an
† andan create and annihilate an electronic excitati

of moleculen, respectively. The couplingJnm(nÞm) is the
intersite interaction of dipole origin between centersn andm
(Jnn[0). Hereafter, we assume that transition dipole m
ments are perpendicular to the plane of the system and
their magnitudes are the same. Thus, the intersite interac
is found to be of the formJnm5J/ur n2rmu3, whereJ.0 is
the coupling between NN centers in the regular lattice. F

-
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J.0, the state coupled to the light is that at the top of
exciton band. Rigorously speaking, the optical dynamics
excitons in such a case can be substantially affected by
coupling to phonons.18 In this paper, we do not aim to
present a complete description of the problem but ma
focus our attention on the effects of coupling to far neighb
on the one-exciton absorption spectrum of 2D Frenkel e
tons, just to demonstrate the relevance of the long-range
of the dipole–dipole interaction.

The source of disorder lies in the interaction termsJnm
caused by randomness in the molecular positions, the di
bution of each one being assumed Gaussian

P~jn!5
1

2ps2
expS 2

jn
2

2s2D , ~2!

wherejn5r n2n andn5(nx ,ny) with 1<nx , ny<N being
integers. For the sake of simplicity, the same standard de
tion s along both directions has been taken, but differ
values can be considered as well in our model. We do
assume any correlation in the fluctuations of different po
tions, so that the distribution function of a realization of d
order is represented by the direct product of single Gauss
~2!.

III. ONE-EXCITON ABSORPTION SPECTRUM

Having presented our model, we now describe t
methods we have used to calculate the absorption spe
First, the absorption line shapeI (E) of a one-exciton transi-
tion we will be interested in for this paper can be obtained
follows. Let us consider the total dipole moment opera
D5(n(an

†1an), where the dipole moment of each center
taken to be unity. Here we are restricting ourselves to
case of systems whose length is much smaller than the
cal wavelength. Denote the eigenvectors and eigenvalue
the HamiltonianH by uk& and Ek , respectively. Then, the
one-exciton absorption spectrum is given by

I ~E!5
1

N (
k

u^kuDuvac&u2d~E2Ek!, ~3!

where the stateuvac& stands for the exciton vacuum. In pra
tice, one considers a broadenedd function, replacing the
properd function by a Lorentzian distribution of half-width
a

d~E2Ek!→
a

p

1

a21~E2Ek!
2

.

The dissipation parametera mimics the always present re
laxation.

The use of Eq.~3! for calculations of the one-excito
absorption spectrum implies diagonalization of the Ham
tonian~1!. Huber and Ching19 proposed an alternative~time-
domain! method for obtaining this spectrum based on
exciton Green function. It consists of the following. Usin
the representation

a

a21~E2Ek!
2

5ReE
0

`

dt e2at1 i ~E2Ek!t,
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Eq. ~3! can be rewritten in the form

I ~E!5
1

pN ReF E
0

`

dt e2at1 iEt(
n

Gn~ t !G . ~4!

Here, we have introduced the Green functionGn(t) accord-
ing to19

Gn~ t !5^vacuane
2 iHtDuvac&. ~5!

This function obeys the equation of motion

i
d

dt
Gn~ t !5(

m
JnmGm~ t !. ~6!

Initial conditions readGn(0)51 and free-end boundary con
ditions are used. The microscopic equation of motion is a
discrete Schro¨dinger-like equation on a lattice, and standa
numerical techniques may be applied to obtain the solut
Once the equation of motion is solved, the line shape
found from Eq.~4!.

For the infinite lattice, both definitions~3! and~4! give a
self-averaged quantity. For a finite lattice, one should m
the average of Eqs.~3! and~4! over the ensemble of realiza
tions of disorder or, in other words, over the probability d
tribution given byPnP(jn) with P(jn) defined in~2!.

IV. ORDERED LATTICE

A. Infinite lattice

In this section, we discuss the case of an infinite latt
where molecules are placed over regular lattice points~s
50!. This task is instructive in order to compare our mod
with those based on the NN approximation. The microsco
equation of motion~6! reduces in this case to

i
d

dt
Gn~ t !5J(

m

1

um2nu3
Gm~ t !, ~7!

wherem and n run over the regular lattice sites, excludin
singular terms~mÞn!. It can be solved by means of th
Fourier transformation

Gn~ t !5 (
kPBZ

eik•nGk~ t !, ~8!

where BZ refers to the first Brillouin zone:2p,kx , ky

<p. The calculation is straightforward and gives the follow
ing result:

Gn~ t !5exp~2 iE0t !, ~9!

whereE0[Ek50 and

Ek5J(
nÞ0

1

unu3
eik•n ~10!

is just the exciton energy spectrum. After inserting~9! in ~4!,
the one-exciton absorption spectrum is found to consist o
single line centered at the energy

E05JF3 , ~11!

where for brevity we have introduced the notation
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Fl5(
n

1

unu l 54z~ l /2!b~ l /2!. ~12!

Here, z(s)5(n51
` n2s is the Riemann’s zeta function an

b(s)5(n50
` (21)n(2n11)2s is the analytical continuation

of the Dirichlet series.13,20 Thus, F354j(3/2)
3b(3/2)59.03,... It is worth mentioning that this energy
rather different from that obtained in the NN approximatio
This approximation considers only the four terms withunu51
in the sum appearing in~12!, the energy of the main line thu
being 4J instead of 9.03J. Therefore, we are led to the con
clusion that the NN approximation largely underestima
the value of the blueshift.

The exact exciton spectrum~10! near the top of the band
also strongly differs from that in the NN approximatio
given by

Ek52J@cos~kx!1cos~ky!#.4J2Jk2. ~13!

As it was found in Ref. 13, foruku!1 Eq. ~10! reduces to

Ek.9.03J22pJuku, ~14!

i.e., the exact exciton energyEk scales linearly asuku, con-
trary to the parabolic law for the NN model.

B. Finite lattice

Once the infinite ordered lattice has been discussed
turn our attention to the finite one. We have solved num
cally the microscopic equation of motion~6! using the
fourth-order Runge–Kutta method. The calculations ha
been carried out choosingJ51 anda50.05. The maximum
integration time was 150 in these units and the numbe
time steps was 12 000. Figure 1 shows the absorption spe
for different system sizes, indicated on each curve. We
tice that the main absorption line is blueshifted upon incre
ing the lattice size. For the largest lattice~80380!, it is cen-
tered atE58.76, rather close to the main line in an infini
lattice (E059.03). The energy shift between the main line

FIG. 1. Absorption spectra in arbitrary units for finite ordered 2D lattices
different sizes when dipole–dipole interaction between all sites is taken
account. Curves are calculated by means of the Green function method
J51 and a50.05 and have equal area. Inset shows the energy shiftDE
[E02E as a function of the lateral size.
.
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the infinite lattice and the main line of theN3N lattice
scales as;N21 ~see inset of Fig. 1! as deduced from~14!.

Besides the main line, several almost equidistant a
well-defined satellite peaks appear in the low-energy side
the spectra. We relate these peaks to transitions to lo
exciton states having oscillator strength smaller than
main transition~to the top band state!, similar to what occurs
in a finite linear chain~see, for instance, Ref. 14!. The rela-
tive intensities of peaks are in a good correspondence to
sequence 1/(2n21)2 with n51,2,..., as occurs for a linea
chain as well. ForN580, the sequence of peaks is fitte
surprisingly well by the expression~14! for the infinite lattice
by replacingk in the first Brillouin zone byk5@pnx /(N
11),pny /(N11)#, wherenx , ny51,2,...,N. In particular,
the first three peaks in Fig. 1 have energies 8.76, 8.33,
7.88 in order of decreasing intensity. The energies, ca
lated from Eq.~14! by taking (nx ,ny) as the following sets
~1,1!, ~1,3!, and~1,5! for N580, appear to be 8.69, 8.27, an
7.80, respectively. These findings are unambiguous evide
that the corresponding 2D exciton statesCnn can be approxi-
mately expressed as products of the 1D exciton states

wn i ,ni
5S 2

N11D 1/2

sinS pn ini

N11 D , i 5x,y ~15!

despite the fact that the 2D exciton energy spectrum~14! is
not parabolic and thus the motion of excitons alongx andy
directions is not independent of each other. It should be
ticed that such a correspondence becomes, however, w
as the lattice size decreases. Observing the spectra pres
in Fig. 1, one can identify more satellites with very lo
intensities which are visible nevertheless. Fitting their en
gies in the same manner as above showed that they ca
related approximately to the sets~1,4! and ~1,6!. Since the
oscillator strengths of 1D exciton states withny54,6 are
rigorously equal to zero, we believe that the 2D states n
discussed are composed of the 1D statenx51 and of the
states ny54 and ny56 mixed perturbatively with the
former.

V. DISORDERED LATTICE

Having discussed the regular lattice, we now turn to d
ordered lattices~sÞ0! to analyze the effect of randomness
molecular positions on the width and shift of the absorpt
line. Our task is to calculate the averaged Green funct
^Gn&, where brackets denote the average over realization
disorder. The coherent potential approximation21 is widely
used for this aim. It has been successfully applied for
scribing the optical characteristics of Frenkel excitons in
presence of randomness in the transition energies19,22,23 as
well as for theoretical studies of coupled spin systems w
randomness in the intersite coupling.24–26We develop below
a simpler approach that looks like an effective medium
proximation ~EMA!, which will successfully estimate the
shift of the optical absorption line as a function of the deg
of disorder, and use the concept of motional narrowing27 to
estimate the line width.
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A. Shift of the absorption spectra

The EMA approach simply consists of making the av
age over the realizations of disorder directly in Eq.~6! and
replacing ^(mur n2rmu23Gm(t)& by ^(mur n2rmu23&
3^Gm(t)&. It might be correct for relatively small fluctua
tions of molecular positions~s!1!, namely when small val-
ues ofur n2rmu are not very probable. In doing so, we obta
the following equation of motion for the averaged Gre
function:

i
d

dt
^G~ t !&5JFeff^G~ t !&, ~16!

where the subscript has been dropped as the averag
Gn(t) becomes independent of position. For brevity, we ha
defined

Feff[(
m

K 1

urm2r 0u3
L . ~17!

Notice that bothrm andr 0 fluctuate around regular position
To determineFeff we assume thatrm does not fluctuate bu
r 0 fluctuates around the origin with deviation&s along each
direction. In addition, under the assumption of small deg
of disorder (ur 0u!1), one can expandurm2r 0u23 in Taylor
series. We then obtain

Feff5F319F5s21 225
2 F7s41O~s6!. ~18!

Using the value ofFl given in ~12!, the shift of the optical
line is found to be

E~s!2E~s50!5J~45.81s21497.60s4!, ~19!

for an infinite 2D lattice with dipole–dipole interaction. No
that the obtained scaling does not depend on the dimens
ality since it yields the same quadratics-dependence of the
absorption line shift reported in Ref. 14 for 1D configur
tionally disordered exciton systems and differs from the
most linear behavior found for 2D exciton systems with
agonal disorder.28

B. Broadening of the absorption spectra

In order to get insight into the broadening of the abso
tion spectra due to disorder, one should calculate the m
square deviation of the exciton eigenenergies as well as
matrix of the exciton mode coupling. For the sake of si
plicity, let us consider a square lattice and assume perio
boundary conditions so that, in the absence of disor
Bloch plane waves represent the proper eigenfunctions o
Hamiltonian~1!. Now, we rewrite the Hamiltonian~1! in the
Bloch wave representation

H5(
k

Ekak
†ak1(

kk8
~dH!kk8ak

†ak8 , ~20!

wherek ranges over the first Brillouin zone,Ek is given by
Eq. ~10!, and

~dH!kk85
J

N (
mn

S 1

um2n1jm2jnu32
1

um2nu3D
3ei ~k•m2k8•n!. ~21!
-

of
e

e

n-

l-
-

-
n-
he
-
ic
r,
he

The subject of our interest is precisely the matrix (dH)kk8
and our task is to evaluate the following magnitude:

skk8
2

5^~dH!kk8
2 &2^~dH!kk8&

2. ~22!

The diagonal part,skk , determines the value of the typica
fluctuation of the eigenenergyEk due to disorder. For per
turbative magnitudes of disorder, it has a direct relations
with the inhomogeneous width of the corresponding exci
state. The perturbative approach is valid provided the o
diagonal termsskk8 , describing the exciton level mixing, ar
smaller than the corresponding energy differencesuEk
2Ek8u. From the viewpoint of the exciton optical respons
coupling of the optically active exciton statek505~0,0! to
the others is of major importance. Therefore, the equa
sk105E02Ek1

, where the statek15(2p/N,0) is adjacent to
the top state, separates the ranges of perturbative and
perturbative magnitudes of the degree of disorder.

Assuming the smallness of the standard deviations and
the long-wave limituku!1—the case of our interest—one ca
arrive at the following formula forskk8

2 ~see the Appendix
for further details!:

skk8
2

5
2520J2s4

N . ~23!

The N21 scaling obtained is similar to that for 1D excito
system with diagonal disorder and is known as exchang
motional narrowing effect,27 meaningN-times reducing the
variance of disorder distribution for a collective~excitonic!
state as compared to the seeding values2. What is most
important, thes-dependence, same as for 1D systems,29 is
sufficiently different: here,skk8

2 is proportional tos4, while
for diagonal disorder the corresponding magnitude scale
s2.27 The latter behavior also appears when one simula
off-diagonal disorder by uncorrelated distributions of t
nearest-neighbor hopping integrals.16,30 The reason for the
difference found lies in the fact that, despite assumingjn to
be an uncorrelated stochastic variable for different sitesn,
hopping integrals appear to be correlated. Indeed, let us
sider for the sake of simplicity these integrals for the near
neighbors,Jn1g,n andJn2g,n ~ugu51!, and look at their fluc-
tuations created by the deviation ofnth site up to linear terms
in jn. Evidently,dJn1g,n53g•jn, while dJn2g,n523g•jn,
just confirming our claim. Due to this feature, they almo
~or exactly atk5k8, see the Appendix! cancel each other in
(dH)kk8 when summing over neighboring sites in the lo
wavelength limituku, uk8u!1. This is why the major contribu-
tion to (dH)kk8 appears to be quadratic ins.

For nonperturbative magnitudes of the disorder,skk8
~kÞk8! mixes the exciton states. This yields exciton loc
ization within 2D regions of typical sizeN* 5N* 3N*
smaller thanN5N3N and subsequently affects the excito
optical response. For a perfect lattice, only the state w
k50 is coupled to the light and carries the entire excit
oscillator strength, which is thenN5N3N times larger than
that for an isolated molecule. Being mixed with other~non-
radiative! states~kÞ0!, the radiative state loses a part of th
oscillator strength due to its spreading over the nonradia
ones. Thus, an effective numberN*,N, known as the num-
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ber of coherently bound molecules for 1D excitons,27 re-
places the system sizeN as the enhancement factor of th
oscillator strength of the localized exciton states. It refle
the typical number of sites on which the localized excit
wave functions have a significant magnitude or, in oth
words, the number of molecules within a typical localizati
area.31,32 Accordingly, the inhomogeneous width of the op
cal exciton line will also be subject to renormalization a
can now be estimated fromskk replacingN with N* .27

In our estimate ofN* we will follow a simple rule, first
proposed in Ref. 33, that works fairly well for 1D excito
systems. This rule simply consists of applying the relat
sk105E02Ek1

, providing the limit of validity of the pertur-
bative approach, to a typical localization areaN* 3N* , i.e.,
replacing in this equalityN with N* . It will give us the
self-consistent equation for the size of the coherent a
First, let us look forN* in the NN approximation. Taking
into account Eqs.~13! and ~23! and following the above
rules, we then find

N* 5
2p4

315s4 , ~24a!

and consequently

sNN* 5S 2520

N* D 1/2

Js25
630

p2 Js4. ~24b!

Equations~24a! and~24b! provide estimates of the oscillato
strength and the standard deviation of the absorption lin
nonperturbative magnitudes of disorder. We stress that
scaling ofsNN* }s4 dramatically differs from that found fo
2D exciton systems with diagonal disorder, for whichsNN*
}s.28

Turning now to the case of long-range interactions a
making estimates as above, we arrive at a surprising re
namely, that the quantityN* we are looking for falls out of
the equation determining it. This occurs because bothEk and
skk8 scale asN21/2. Finally, we get an estimatesLR*
52p/(2520)1/4.0.89 for the magnitude of the degree
disorder, which separates the perturbative and nonpertu
tive ranges ofs. Within the perturbative range (s!sLR* ),
exciton eigenfunctions spread over the whole lattice so
N*5N. The inhomogeneous width of exciton levels is s
given by skk . At nonperturbative magnitudes of disord
(s>sLR* ), Eq. ~23! fails since for its derivation, the condi
tion s!1 has been used~see the Appendix!. Therefore,skk8
should be recalculated fors>sLR* but it is not the case we
will be dealing with.

C. Numerical simulation

For the magnitudes of the degree of disorders<0.08
and lattice sizeN520320 we used in our simulations of th
absorption spectra of disordered lattices, the correspon
motionally reduced values areskk8,0.016. Thus, despite th
seeding, disorder is rather strong~the standard deviation o
the nearest-neighbor hopping integral for the 2D case
given by sJ56sJ and for s50.08 is equal to 0.48!, the
quantity skk8 drops to perturbative values~unlike the 1D
case14!. This requires tiny values of the dissipation parame
s

r

n

a.

at
he

d
lt,

a-

at

ng

is

r

a in Eq. ~4! to observe line broadening which, in turn, dra
tically increases the computation time. Hence, we have
rectly diagonalized the Hamiltonian~1! to find the exciton
absorption spectra. We then use Eq.~3! to find the absorption
line shape, where we replacedd(E2Ek) by (1/R)u(R/2
2uE2Eku), u being the Heaviside step function andR the
spectral resolution.14 Different values of the degree of diso
der s have been studied and each spectrum shown in
figures below corresponds to an average over 2000 rea
tions of disorder. In all the simulations, we have chosenJ
51 andR50.001.

Figure 2 shows the absorption spectra of 20320 disor-
dered lattices when dipole–dipole interaction between
sites is taken into account for different values of the deg
of disorder. Notice that the main line shifts towards the hig
energy region of the spectrum on increasing the degree
disorder. In addition, the main line is rapidly broadened up
increasing the degree of disorder, in agreement with the a
lytical results shown in the previous section. Besides
main absorption line, several satellite peaks appear in
low-energy side of the spectra, resembling those found
ordered lattices. As an example, the inset of Fig. 2 prese
the satellite peaks closest to the main absorption line
s50.02. As expected, these satellite peaks are also shifte
the high-energy region and broadened due to disorder.
invariance of relative positions of the main peak and sa
lites ~they match those for an ordered lattice of the same s
see Fig. 1! is explained by the low magnitudes ofskk8
,0.016, being unable to mix the exciton states of perf
lattice. Notice once more that the conditions of our simu
tions correspond to the perturbative limit of disorder. Unfo
tunately, higher values ofs make the occurrence of sma
values of the nearest-neighbor distance highly probable,
leading to huge hopping integrals and blowup of numeric

For comparison, Fig. 3 presents the behavior of the
sorption spectra for 20320 lattices upon increasing the de
gree of disorders within the NN approximation. The main
line again is blueshifted and broadened upon increasing

FIG. 2. Absorption spectra in arbitrary units for 20320 disordered lattices
when dipole–dipole interaction between all sites is taken into acco
Curves are calculated by diagonalization of the Hamiltonian withJ51 and
R50.001 and comprise the results of 2000 averages. The inset show
low-energy satellite peaks fors50.02.
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degree of disorder. Fors<0.04, its width~at a fixeds! is
almost the same as for the case when the full dipole–dip
interaction is taken into account, but it is larger for high
values of the degree of disorder. An extra broadening of
absorption line occurs, indicating that the disorder starts
mix the exciton states which results in their localizati
within an area of size smaller than the lattice size. Now,
numberN*,N determines the inhomogeneous line wid
This point will be discussed in more detail below. The ma
line is accompanied by satellite peaks, as the inset of Fi
shows fors50.02. The locations of all of them perfectl
follow Eq. ~13!, in which k should be taken of the formk
5@pnx /(N11),pny /(N11)# with nx ,ny51,2,...,N. For
instance, fors50.02, the highest satellite peaks correspo
to the set~1,3!, ~1,5!, ~1,7!, ... . Besides, there exists a num
ber of satellite peaks with evennx or ny indices whose 1D
counterpart has vanishing oscillator strength and, con
quently, they present very low intensity@see, e.g., the sate
lite peak closest toE53.9, whose indices are~1,2!#. Such
peaks are not present in ordered lattices with the NN inter
coupling. Hence, we relate their appearance to mixing of
optically active states (nx,y51) with the dark ones~with nx,y

even! caused by disorder.
Figure 4 compares the shift of the main line obtain

numerically with the EMA prediction given in~19!, where
we observe a nonlinear shift upon increasing the degre
disorder. We see that the EMA works very well fors<0.03
but underestimates the value of the shift for strong disord
This is to be expected since we assumed thats was small to
arrive at Eq.~19!. Additional terms in the expansion~18! as
a function of powers ofs2 provide positive contributions
leading to a larger shift.

Finally, we have also obtained the full width at ha
maximum ~FWHM! of the main absorption line to analyz
its dependence on the degree of disorder. The results for
models, when the dipole–dipole interaction between all s
is taken into account as well as within the NN approxim
tion, are shown in Fig. 5~a!, where the value of the spectra
resolution has been subtracted. As was already mentio

FIG. 3. Absorption spectra in arbitrary units for 20320 disordered lattices
within the NN approximation. Curves are calculated by diagonalization
the Hamiltonian withJ51 andR50.001 and comprise the results of 200
averages. The inset shows the low-energy satellite peaks fors50.02.
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for a fixed s smaller than 0.04, the FWHM is almost th
same in both models but the curves clearly start to sepa
for higher values of the degree of disorder. We have fou
that for the model of full dipolar coupling, the FWHM ca
be accurately fitted over the entire range of the degree
disorder considered in this work by a power lawasg with
a525 andg51.79. The exponent 1.79 is rather close to t
value of 2 expected from our theoretical estimates. On
contrary, the FWHM of the main absorption line obtain
within the NN approximation does not fit a single power la
at it follows from Fig. 5~a!. The exponentg51.93 found for
small degree of disorder~s,0.04! is close to 2, but it turns
out to be roughly 3.78 for stronger disorder~s.0.04!. The
valueg53.78 is again in good agreement with our theore
cal estimate~24b! for nonperturbative magnitudes of the d
gree of disorder.

We conjectured above that, within the NN approxim
tion, disorder starts to mix the exciton states ats.0.04 re-
sulting in their localization. To validate this assertion w
have also calculated the inverse participation ratio~IPR! of

f
FIG. 4. Shift in energy of the main absorption line versuss when dipole–
dipole interaction between different sites is taken into account. Solid lin
the result of quadratic fit. Dashed and dotted lines show EMA prediction
to orderss2 ands4, respectively.

FIG. 5. ~a! FWHM of the main absorption line and~b! IPR of the uppermost
state versuss. Curves are calculated by diagonalization of the Hamilton
with J51 and comprise the results of 2000 averages. The dashed
represent the theoretical slopes 2 and 4.
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the uppermost exciton stateCnn according to the standar
definition IPR5(nuCnnu4, where the wave function is as
sumed to be properly normalized~see, e.g., Ref. 34!. For
delocalized states, spreading uniformly over the 2D syst
the IPR behaves likeN22 upon increasing the lateral sizeN.
On the contrary, localized states exhibit much higher valu
the higher the value, the smaller the localization length. T
results are shown in Fig. 5~b!. For the model of dipolar cou
pling between all sites, the IPR is approximately const
over the entire range ofs. Its value is close to the theoretica
expectation 0.0025 for delocalized states in 20320 systems.
Within the NN approximation, the IPR suddenly increas
for s.0.04, meaning that the exciton starts to be localiz
in perfect agreement with our previous conjecture.

VI. SUMMARY

Coupling to far neighbors has pronounced effects on
one-exciton absorption spectra of perfect 2D lattices. In
case of positive sign of the dipole–dipole coupling cons
ered in the present paper, the absorption spectrum consis
the main peak and almost equidistantly placed redshifted
ellites of decreasing intensities. These satellites reflects a
ear dispersion law of the exact 2D exciton energy spect
unlike the parabolic law of the NN problem. The main pe
is blueshifted approximately twice as compared to that a
ing in the NN approximation. Introducing Gaussian config
rational disorder yields a blueshift of the main peak of t
exciton absorption spectrum, obeying a polynomial biq
dratic law with respect to the degree of configurational d
order as well as broadening all the peaks.

The motional narrowing effect in the case of Gauss
configurational disorder sufficiently differs from that of d
agonal disorder. Being similar to the latter in the scaling l
with respect to the number of sites (;N21/2), the former is
different in the dependence on the degree of disorders, giv-
ing rise to a parabolic behavior, contrary to the linear o
found for diagonal disorder. As a result, motionally reduc
disorder appears to have perturbative magnitudes, even
relatively large values of the standard deviation of molecu
positions.
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APPENDIX: ESTIMATE OF THE MOTIONAL
NARROWING EFFECT IN THE PRESENCE OF
CONFIGURATIONAL DISORDER

In what follows, we assume the smallness of the st
dard deviations and expand the quantity in parentheses
Eq. ~21! in the Taylor series up to fourth order with respe
to

Xmn5
2~m2n!•~jm2jn!

um2nu2
1

ujm2jnu2

um2nu2
.

,

s:
e

t

s
,

e
e
-
of
t-

n-
m

-
-

-
-

n

e
d
for
r

/

-

t

We will be interested in the contribution toskk8
2 up to the

same order with respect tos. The corresponding expression
read

~dH!kk85
J

N (
mn

ei ~k•m2k8•n!

um2nu3

3S 2
3

2
Xmn1

15

8
Xmn

2 2
35

16
Xmn

3 1
315

128
Xmn

4 D ,

~A1a!

and consequently

~dH!kk8
2

5S J

ND 2

(
mn

ei ~k•m2k8•n!

um2nu3 (
pq

e2 i (k•p2k8•q)

up2qu3

3S 9

4
XmnXpq2

45

8
XmnXpq

2 1
105

16
XmnXpq

3

1
225

64
Xmn

2 Xpq
2 D . ~A1b!

Carrying out the average in Eq.~A1! and keeping all the
necessary terms, we obtain~the calculations are rather te
dious but straightforward, so that we only quote the fin
result!

^~dH!kk8&5@9JQ5~k!s21 225
2 Q7~k!s4#dkk8 , ~A2a!

^~dH!kk8
2 &5

9J2s2

N uP5~k!1P5* ~k8!u22
36J2s4

N

3@Q5~k!1Q5~k8!#21
153J2s4

N
3@Q10~0!1Q10~k1k8!#2

1
225J2s4

2N R~k,k8!1
270J2s4

N
3@P5~k!1P5* ~k8!#@P7* ~k!1P7~k8!#

181s4Q5
2~k!dkk8 , ~A2b!

where the functionsQl(k), Pl(k), andR(k,k8) are given by

Ql~k!5(
m

eik•m

umu l
, ~A3a!

Pl~k!5(
m

meik•m

umu l , ~A3b!

R~k,k8!5(
mn

~m•n!2

umu7unu7 ~eik•m1eik8•m!~eik•n1eik8•n!.

~A3c!

For the magnitude of interest, we get
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skk8
2

5
9J2s2

N uP5~k!1P5* ~k8!u22
36J2s4

N

3@Q5~k!1Q5~k8!#21
153J2s4

N

3@Q10~0!1Q10~k1k8!#21
225J2s4

2N R~k,k8!

1
270J2s4

N @P5~k!1P5* ~k8!#@P7* ~k!1P7~k8!#.

~A4!

From the viewpoint of our problem, the domain of im
portance of the wave numbersk and k8 is represented by
their smaller magnitudes. In this regard, it should be stres
that, despite the lowest term ofskk8

2 with respect to the seed
ing degree of disorder is of orders2, the main contribution
to skk8

2 is determined by the terms of fourth order ins.
Indeed, for k5k8 this statement is rigorous sincePl(k)
1Pl* (k)[0. On the other hand, as follows from the defin
tions~A3!, Pl(k50)50, which means that the correspondin
terms in Eq.~A4! have an additional suppression factor pr
portional tok2;N21. Therefore, they can be neglected
compared to other terms, keeping in mind thatN is large
enough. Estimating the rest of the functions in Eq.~A4! as
follows, Ql(k→0)'4 and R(k,k8→0)'32, we arrive fi-
nally at Eq.~23!.
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