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Abstract

We consider two-dimensional arrays of two-level molecules whose excited states are described by Frenkel excitons.
Local dipole moments are assumed to be perpendicular to the system plane so that intersite interaction depends only on
the distance between far neighbors. We consider Gaussian randomness in the molecular positions and numerically
determine the optical absorption line shape of "nite random lattices with di!erent degrees of disorder. Results are
compared to those obtained within the framework of the nearest-neighbor approximation. ( 1999 Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

The concept of Frenkel exciton has been success-
fully applied in the study of optical properties of
one-dimensional (1D) molecular J-aggregates of
cyanine dyes (see Refs. [1,2] and references therein).
Optical properties of two-dimensional (2D) systems
comprised of cyanine dyes were also interpreted in
terms of 2D Frenkel excitons [3}6]. Theoretical
approaches often consider the nearest-neighbor
(NN) approximation but it has been found that

coupling to far neighbors originates remarkable
e!ects on 1D Frenkel exciton states [4,7}10].
Simple geometrical considerations suggest that
even stronger e!ects should be expected in 2D
systems, as we will show below. To this end, we will
focus on 2D arrays of two-level molecules whose
excited states are described by Frenkel excitons.
We assume that disorder arises from randomness in
the positions of molecules and keep the long-range
dipole}dipole terms as well.

2. One-exciton absorption spectra

Let us consider a 2D array of N"N]N op-
tically active molecules whose positions are
rn around a regular 2D square lattice with spacing
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unity. Each molecule has two levels, the transition
energy between them we set to zero for all the
molecules of the array. The e!ective Frenkel
Hamiltonian describing this system can be then
written as follows:

H" +
mEn

Jnm asn am, (1)

where asn and an represent creation and annihilation
operators of excitons at site n and Jnm stands for the
dipolar coupling between two di!erent molecules
located at rn and rm.

We assume that dipoles are equal and perpen-
dicular to the plane of the 2D regular lattice so that
the intersite interaction is found to be of the form
Jnm"J/Drn!rmD3, where J'0 is the coupling be-
tween NN centers in the regular lattice. At J(0,
the state coupled to the light lies at the top of the
one-exciton band (similar to that one gets for H-
aggregates). The exciton}phonon coupling is ne-
glected in this paper.

Now we consider an optical process in which an
exciton is created after a very short pulse excitation.
We restrict ourselves to those systems whose typi-
cal size is much smaller than the optical wave-
length. To evaluate the optical absorption line
shape, I(E), as a function of the energy we must
consider the total dipole moment operator
D"+n(asn#an), where the dipole moment of each
molecule is taken to be unity [11]. The line shape is
then given by

I(E)"
1

N
+
k

DSkDDDvacTD2
a
p

1

a2#(E!E
k
)2

, (2)

where DvacT is the exciton vacuum. The sum runs
over all the N eigenstates DkT of the Hamiltonian
(1), E

k
denotes their corresponding eigenvalues and

the Lorentzian function accounts for "nite instru-
mental resolution or any other source of homo-
geneous broadening. Replacing the Lorentzian
function by (1/p)Re:=

0
dt exp[!at#i(E!E

k
)t]

we arrive at

I(E)"
1

pN
Re CP

=

0

dte~at`*Et +
n

Gn(t)D. (3)

Here, we have introduced the Green's function Gn(t)
according to Ref. [11]. This function obeys the

equation of motion

i
d

dt
Gn(t)" +

mEn

JnmGm(t). (4)

Initial conditions read Gn(0)"1 and free-end
boundary conditions are used. The microscopic
equation of motion is a 2D discrete SchroK dinger-
like equation on a lattice and standard numerical
techniques may be applied to obtain the solution.
Once the equation of motion is solved, the line
shape is found from Eq. (3).

3. Periodic lattice

In this section we discuss the case of a periodic
lattice where molecules are placed over regular
lattice points. Thus rn"n, with n"(n

x
, n

y
), n

x
and

n
y

being integers. The microscopic equation of
motion (4) can be solved by means of the Fourier
transform

Gn(t)" +
k|BZ

e*k >nGk(t), (5)

where BZ refers to the "rst Brillouin zone, that is,
k"(2p/N) (k

x
, k

y
) with !N/2(k

x
, k

y
4N/2. The

calculation is straightforward and yields

Gn(t)"exp(!iEk/0
t), (6)

where the exciton dispersion relation is given by

Ek"J +
nE0

1

DnD3
e*k >n. (7)

After inserting Eq. (6) in Eq. (3) the one-exciton
absorption spectrum is found to consist of a single
line centered at the energy Ek/0

"JF where
F"+nDnD~3K9.03. As it was found in Ref. [12],
at DkD;1 Eq. (7) reduces to

EkK9.03J!2pJDkD. (8)

Therefore, the exact exciton energy Ek scales lin-
early as k, namely as N~1, close to the top of the
exciton band. This behavior is rather di!erent than
that obtained in the NN approximation, which
yields the parabolic spectrum EkK4J!Jk2.
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Fig. 1. Absorption spectra in arbitrary units for "nite ordered
2D lattices of di!erent sizes.

Fig. 2. Absorption spectra in arbitrary units for 40]40
disordered lattices.

4. Disordered lattice

We assume that molecular positions are Gaus-
sian distributed around regular lattice sites with
probability distribution

P(nn)"
1

2pp2
exp A!

nn2

2p2B, (9)

where nn"rn!n and n"(n
x
, n

y
) with 04n

x
,

n
y
4N being integers.

4.1. Ewective medium approximation

For a small degree of disorder, the e!ective me-
dium approximation (EMA) consists simply of
making the average over the realizations of dis-
order directly in Eq. (4) and replacing
S+mDrn!rmD~3Gm(t)T by S+mDrn!rmD~3TSGm(t)T.
Then one obtains the following equation of motion
for the averaged Green function

i
d

dt
SG(t)T"JSG(t)T+

m T
1

Drn!rmD3U. (10)

Expanding Drn!rmD~3 in the Taylor series up to
n4 we obtain the shift of the optical absorption line

E(p)!E(p"0)KJ(45.81p2#497.60p4), (11)

for a 2D dipolar exciton.

5. Numerical results

We have numerically solved (4) for "nite lattices
using the fourth-order Runge}Kutta method for
the cases of ordered and disordered lattices. The
calculations have been carried out choosing J"1
and a"0.15. The maximum integration time
was 50 in these units and the number of time steps
was 4000.

Fig. 1 shows the absorption spectra for ordered
lattices of di!erent sizes, indicated on each plot, up
to 100]100. The main absorption line is blue-
shifted on increasing the lattice size and its position
progressively approaches 9.03, as expected. The
energy shift between the main line of the in"nite
lattice and the main line of the N]N lattice scales
as &N~1, as predicted in Eq. (8). In addition, we

observe the occurrence of well-de"ned and equidis-
tant satellite lines in the low-energy region of the
spectra, which we relate to the transitions to the
lower exciton states having oscillator strangths
smaller than the main transition (to the top band
state), similar to what occurs for a "nite linear chain
(see, for instance, Ref. [7]).

Fig. 2 shows the absorption spectra of 40]40
disordered lattices (obtained by averaging over 10
realizations of the disorder) for di!erent values of p,
when dipole}dipole interaction between di!erent
sites is taken into account. Notice that within the
range p40.09, both the main line and satellites are
present in the absorption spectra, blue-shifting
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Fig. 3. Shift in energy of the main absorption line versus p when
dipole}dipole interaction between di!erent sites is taken into
account. Solid line is the result of quadratic "t.

upon increasing p, however, without noticible cha-
nges of their relative positions. Besides, the peak
broadening are determined by the arti"cial width
a and not by disorder. All the peculiarities found
unambigiously mean that the system we are dealing
with correspond rather to the perturbative limit of
disorder, unlike it occurs in a 1D exciton system
under similar conditions [4,7].

Fig. 3 compares the shift of the main line ob-
tained numerically with the EMA prediction given
in Eq. (11). We see that EMA works very well for
p40.03 but underestimates the value of the shift
for stronger disorder. This is to be expected since
we assumed that p was small to arrive at Eq. (11).

6. Summary

We have found that long-range dipolar coupling
has noticeable e!ects on the one-exciton absorp-
tion spectra of 2D lattices. Periodic lattices mani-
fest a single-absorption line whereas "nite lattices
also present satellite lines in the low-energy region
(for positive intersite coupling) originating of the
"nite size e!ect. These satellite lines are equally
spaced due to the linear behavior of the exciton
eigenenergy spectrum near the top of the band.
This is to be compared to the parabolic behavior

obtained in ordered lattices within the NN approx-
imation. The main peak is blue-shifted approxim-
ately two-times more as compared to that arising in
the NN approximation. Introducing a Gaussian
positional disorder yields a blue shift of both
the main peak of the exciton absorption spectrum
and satellite lines without noticeable changes of
their relative positions (within the range of stan-
dard deviation of positions p40.09). The shift
obeys a polynomial biquadratic law with respect to
p and reasonably well "ts that determined
numerically.
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