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Abstract

The standard one-parameter scaling theory predicts that all eigenstates in two-dimensional random lattices are
weakly localized. We show that this claim fails in two-dimensional dipolar Frenkel exciton systems. The linear energy

dispersion at the top of the exciton band, originating from the long-range inter-site coupling of dipolar nature, yields
the same size-scaling law for the level spacing and the effective disorder seen by the exciton. This finally results in the
delocalization of those eigenstates in the thermodynamic limit. Large scale numerical simulations allow us to perform a
detailed multifractal analysis and to elucidate the nature of the excitonic eigenstates. r 2001 Elsevier Science B.V. All

rights reserved.
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One of the most attractive problems in con-
densed matter physics is the localization of quasi-
particles (electrons, phonons, excitons) in disor-
dered matter. The existence or absence of the
localization–delocalization transition has been
found to strongly depend on the system dimen-
sionality. The one-parameter scaling theory of
localization [1] states that any nonzero disorder
causes exponential localization of all eigenstates in

one-dimensional (1D) and two-dimensional (2D)
systems, regardless of their energies, while in three-
dimensional (3D) systems only a rather strong
disorder causes the state localization. It is to be
noted that there exist several exceptions to this
rule. In this regard, anomalously weak localization
is known to occur at the band center in 1D [2] and
2D [2–4] systems with off-diagonal disorder.
Moreover, correlations in disorder may cause
delocalization of states in 1D systems [5–7] even
in the presence of strong disorder. The long-range
inter-site coupling also may act as a driving force
for delocalization [8–12] in any dimension. We
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have recently shown the absence of localization in
a 1D Hamiltonian with a special type of long-
range intersite interaction, resulting in a specific,
non-parabolic quasi-particle energy dispersion.
Remarkably, the delocalized states belong to one
tail of the band [13].

In this work we report further progress along
the lines mentioned above and demonstrate that
extended states may occur in 2D disordered
Frenkel systems, where the exciton eigenenergies
of the ordered system scale linearly with the
wavenumber at the top of the exciton band. In
such a case, the level spacing decreases on
increasing the system size in the same manner that
the strength of effective disorder seen by the
exciton [see Eq. (4) below]. Therefore, if the
disorder is of perturbative magnitude for a given
lattice size, it will remain perturbative on increasing
the size, consequently allowing delocalized eigen-
states.

We consider a Frenkel exciton Hamiltonian on
a regular N ¼ N �N lattice with diagonal dis-
order:

H ¼
X

n

enjnS/nj þ
X

mn

Jnm j nS/mj: ð1Þ

Here, jnS is the state vector of the nth excited
molecule with energy en and n ¼ ðnx; nyÞ; nx; ny
being integers (�N=2pnx; nyoN=2; with N
even). The intersite dipole–dipole interaction is
taken in the form Jnm ¼ J=jn�mj3; where J > 0 is
the coupling between nearest-neighbor (NN)
molecules in the lattice (hereafter we assume that
transition dipole moments of molecules are per-
pendicular to the plane of the system and that their
magnitudes are the same). The joint distribution
function of a realization of disorder is the product
of box functions of width D centered around zero.
The quantity D=J is referred to as degree of
disorder.

In the excitonic representation, assuming peri-
odic boundary conditions, the Frenkel Hamilto-
nian (1) takes the form

H ¼
X

K

EK jKS/Kj þ
X

KK0

ðdHÞKK0 jKS/K0j;

ð2aÞ

where K ¼ ð2p=NÞðkx; kyÞ runs over the first
Brillouin zone, kx; ky being integers ranging within
the interval �N=2pkx; kyoN=2: Here EK is the
unperturbed exciton eigenenergy

EK ¼ J
X

na0

1

jnj3
eiK	n; ð2bÞ

and ðdHÞKK0 is the inter-mode coupling matrix

ðdHÞKK0 ¼
1

N

X

n

eneiðK�K0Þn: ð2cÞ

Hereafter we keep long-range terms in Eq. (2b)
due to their major role. It can be shown that near
the extreme points of the band K ¼ 0 and p 

ðp; pÞ the exciton energy spectrum takes a linear
and a parabolic form, respectively [14]:

EKC9:03J � 2pJ jKj; jKj51; ð3aÞ

EKC� 2:65J þ 0:4J jK� pj2; jK� pj51: ð3bÞ

From this it follows that the energy spacing close
to the top of the exciton band behaves as N�1 ¼
N�1=2; while in the vicinity of the bottom scales as
N�2 ¼ N�1:

Depending on the degree of disorder and the
lattice size, the operator dH may couple the
extended excitonic states jKS to each other, thus
resulting in their localization. Our task now is to
calculate the typical fluctuation of this matrix in
order to gain insight into the magnitude of the
exciton inter-mode coupling. The corresponding
magnitude of interest is s2

KK0 ¼ /jðdHÞKK0 j2S;
where the angular brackets indicate the average
over the distribution

Q
n PðenÞ: After performing

the average one gets

sKK0Bs 

Dffiffiffiffiffiffi
N

p : ð4Þ

Here s is referred to as effective degree of disorder.
As we can see, the typical magnitude of the inter-
mode coupling scales as N�1=2 ¼ N�1: The most
remarkable fact is that s decreases on increasing
N in the same manner as the level spacing close to
the top of the exciton band. This finding has a
dramatic effect on the localization properties of the
states within this region. Indeed, consider for
example a finite lattice of size N �N and the
two first unperturbed states with K ¼ 0 and
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K0 ¼ ð2p=N; 0Þ: The energy difference between
them, according to Eq. (3a), is dE ¼ 4p2J=N:
Take now the degree of the disorder to be
D54p2J: Notice that this condition is not very
restrictive since in actual systems the degree of
disorder is expected not to exceed the exciton
bandwith (C11:68J). Under this condition, the
strength of the effective disorder s ¼ D=N; govern-
ing the exciton state mixing and thereof localiza-
tion, is of perturbative magnitude, namely s5dE:
What is most important, it will remain perturbative
upon increasing the lattice size because both
magnitudes scale similarly with N: Hence, these
states will not be mixed by disorder and will
remain extended over the entire lattice indepen-
dent of its size. It is clear that the same conclusion
can be drawn for all the states of the linear
spectrum range except the degenerate ones. They
are mixed by any small amount of disorder.
However, since different sets of degenerate states
are not coupled to each other due to the
perturbative nature of the effective degree of
disorder (s5dE), the above conclusion is also
valid with regard to degenerate states.

Let us now turn to the parabolic range of the
energy spectrum, where the level spacing decreases
as N�1 ¼ N�2 upon increasing the lattice size, i.e.,
faster than the effective degree of disorder s (the
same behavior takes place for both edges of the
band obtained within the NN approximation,
namely taking Jnm ¼ 0 when jn�mj > 1). Now,
even if one starts with a perturbative magnitude of
D at a fixed lattice size (so that s5dE), it becomes
non-perturbative for larger sizes, resulting finally in
localization of those eigenstates.

The results of numerical diagonalization of the
Hamiltonian (1), by means of the Lanczos method
[15], unambiguously confirm our qualitative argu-
ments. To examine the character of the exciton
eigenfunction (localized or extended) we have
calculated the inverse participation ratio (IPR) of
the uppermost exciton state, according to the
standard definition IPR ¼

P
n jCnnj4; where the

sum runs over lattice sites and it is assumed that
the eigenfunction Cnn of the nth eigenstate is
normalized to unity. On increasing the lateral size
N; the IPR scales as N�2 for delocalized states,
spreading uniformly over a 2D system. On the

contrary, localized states exhibit constant values
for different N:

The IPR as a function of the lateral size N is
shown in Fig. 1 when the dipole–dipole interaction
between all molecules is taken into account as well
as within the NN approximation. The plots
comprise the result of 20 averages over disorder
realizations and D ¼ J in all cases. The slope of the
straight line, being equal to �1:91 when dipole–
dipole interaction is taken into account, is close to
the theoretical value �2: This scaling suggests the
fairly extended nature of the uppermost exciton
state. Notice that there is no scaling of the IPR
within the NN approximation, in perfect agree-
ment with the well-known results stating that those
exciton states are localized. Fig. 2 shows an
increase of the IPR at a threshold value C13J;
suggesting the occurrence of a smooth delocaliza-
tion–localization transition.

A comprehensive way to characterize the spatial
distribution of eigenfunctions is the computation
of the singularity spectrum, as explained in,
e.g., Ref. [16]. If we cover the system with ðN=LÞ2

boxes of size L2 (in units of the lattice spacing) and
define the normalized qth moments mkðq; dÞ ¼
mqkðdÞ=

P
k0 m

q
k0 ðdÞ (where d ¼ L=N) of the prob-

ability distribution mkðdÞ ¼
P

nAbox k jCnj2 of
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Fig. 1. Lateral size scaling of the inverse participation ratio of

the uppermost exciton eigenfunction at D ¼ J; obtained by

averaging over 20 realizations of the disorder.
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finding an exciton in the kth box, we may calculate
the Lipschitz–H .older exponents

aðqÞ ¼ lim
d-0

X

k

mkðq; dÞ ln mkð1; dÞ=ln d ð5Þ

which take into account the scaling of the content
of each box with the box size, as well as the
corresponding value of the singularity spectrum

f ðqÞ ¼ lim
d-0

X

k

mkðq; dÞ ln mkðq; dÞ=ln d: ð6Þ

The invariance of the singularity spectrum with
the system size for a given value of disorder is
usually taken [16] as a proof of the occurrence of
the Anderson transition. Nevertheless strong
fluctuations of the eigenstates of the system near
the transition makes it difficult to calculate the f ðaÞ
curve for the threshold value of D: We have
calculated the singularity spectrum for values of
the degree of disorder below the threshold. Fig. 3
shows the broadening of the f ðaÞ curve with
increasing disorder, indicating that the excitonic
eigenfunctions at the top of the band becomes
progressively more and more localized. This result
suggests again the occurrence of a smooth
delocalization–localization transition, as in Fig. 2.

In summary, we have shown that the statement
of the one-parameter scaling theory [1] about the

weak localization in two dimensions, i.e., that any
amount of disorder results in localization of all
eigenstates, fails near the top of the exciton band
where the quasi-particle spectrum scales linearly
with the wavenumber jKj: The states lying at such
energy range are delocalized at moderate strength
of disorder and undergo the continuous Anderson
transition as the disorder degree increases. In our
opinion, the failure of the one-parameter scaling
theory for the conditions considered in the present
work is due to the fact that this theory deals only
with the size scaling of the energy spacing but pays
no attention to the subsequent renormalization of
the disorder (4). As it follows from our treatment,
the latter effect plays a major role in localization
phenomena, violating the one-parameter scaling
and thus leading to the impossibility to match our
results by this theory.
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Fig. 3. Singularity spectrum f ðaÞ of the uppermost exciton

eigenfunction for various degrees of disorder for a system of

size 96 � 96: Results comprise five realizations of disorder.
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Fig. 2. IPR of the uppermost exciton eigenfunction as a

function of the degree of disorder for a system of size N �N

(shown in the plot). Results comprise 10 realizations of

disorder.
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