H
|9

ELSEVIER

Journal of Luminescence 768 77 (1998) 470--473

JOURNAL OF

LUMINESCENCE

Density of states and localization properties of a one-dimensional
Frenkel Hamiltonian with off-diagonal disorder

A. Rodriguez**, F. Dominguez-Adame®, G.G. Kozlov, V.A. Malyshev®

*Departamento de Matematica Aplicada v Estadistica, Universidad Politéenica, E-28040 Madrid, Spain
7 f It . !
® Departamento de Fisica de Materiales, Unitersidad Complutense. E-28040 Madrid, Spain

“ All-Russian Research Center “Vavilor State Optical Institute”,

Bircherava Liniva 12, 199034 Suaint-Petershurg, Russian Federation

Abstract

We study a one-dimensional Frenkel Hamiltonian with ofl-diagonal disorder, focusing our attention on the physical
nature of the zero-energy peak of the density of states. The character of excitonic states (localized or delocalized) is also

examined in the vicinity of this peak. It is shown that the st
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ate being responsible for the peak is localized. ¢ 1998

1. Introduction

Two decades ago, Theodorou and Cohen estab-
lished [ 1] that the density of states (DOS) of a one-
dimensional (1D) tight-binding Hamiltonian with
nearest-neighbor (NN) interaction and random ofl-
diagonal elements presents a singularity at the
center of the band. In Ref. [ 17 it was also stated that
the corresponding state is delocalized. This contra-
dicts the theorem of Mott and Twose [2] that all
states in one dimension are localized in the pres-
ence of disorder. Adding some amount of diagonal
disorder (in the presence of ofl-diagonal random-
ness) makes all states to be localized [3]. Remark-
ably, calculations done for 1D tight-binding
Hamiltonians with only diagonal disorder do not
reveal any singularity in the DOS [4].

Recently, Fidder et al. have found by numerical
diagonalization of the 1D Frenkel Hamiltonian
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with off-diagonal disorder that, notwithstanding
the singularity of the DOS, the corresponding state
is localized when one includes the long-range (LR)
interaction due to dipolar coupling between differ-
ent sites [5]. This finding seems to be in contradic-
tion with the point of view raised in Rel. [1]
suggesting that the state corresponding to the sin-
gularity of the DOS is delocalized. In this paper, we
examine the conclusions of Ref. [1]. We present
arguments demonstrating that the zero-energy
state is localized even in the nearest-neighbor prob-
lem. This conclusion, based on analytical consider-
ations, is then confirmed by numerical simulations
of systems with different sizes and degrees of dis-
order.

2. Is the zero-energy state delocalized?

In this section we briefly restore the arguments of
Rel. [1] leading to the conclusion that the state at
center of the band is delocalized. We present other
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arguments suggesting the opposite point of view
and, what is most important, numerical simulations
confirming our statement.

Let us consider a tight-binding Hamiltonian with
only nearest-neighbor interaction

H =3 Uy dlny<n+ 1+ |+ 1<), (1

H

where U, ,. = — Uj|¢, — &% — U being the
dipole--dipole coupling of nearest-neighbors and
S =m +0,, with 0,, being a stochastic variable
distributed according to the Gaussian law with
variance ¢>
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The randomness in o, aflects the interactions
U,.+1, whose distribution function can be found in
Ref. [5].

The state vector |n) represents an excitation at
site n. All site energics are set to zero since no
diagonal disorder is included. The eigenvalue prob-
lem of the NN-model reads

Un.n+ 1y +1 + Un.n* 1y— = E“ns (3)

where the set [a,} represents the real eigenvector
corresponding to the eigenenergy E. For zero
energy Eq.(3) gives the recurrence relation
o1 = — (U= /U, 1)d, - Using this relation
one can find

a _ U?_n.Zu —1
2ntt — -
U2n.2u+ 1

Usp-zon- U,
x| — o223y 22l dy, 4)
U2n~2.2u~l U2.3

whereas the amplitudes at even positions cqual
zero. The eigenvector given by Eq. (4) represents
the zero-energy state for a chain with odd number
of sites. Defining the localization length L(E = 0)
by the expression

1

= lim : In[t2ntt
LE=0) 2n

n—

; ()

ay

and applying the central-limit theorem the authors
of Ref. [1] obtained 1/L(E = 0) = 0. From this re-

sult, they concluded that the state at center of the
band was delocalized. This statement seems rather
strange since there are at least two reasons for the
vanishing of 1/L(E = 0) which have nothing to do
with delocalization of the zero-energy state. The
first and simplest one is precisely that the amplitude
a, decreases (or increases) with n slower than ex-
ponential. For example, in Ref. [6] it was claimed
(to tell the truth, with no evidence) that a, ~
cxp(v\/;), where ¢ is a constant. If one accepts for
a moment this result, then one should conclude
that the zero-energy state is rather localized
than extended, in contradiction with the state-
ment of Ref. [1]. The second reason concerns the
application of the central-limit theorem. The
quantity Infa,, 4 /a,| itself, although being a sum of
stochastic variables distributed around zero, goes
to zero on increasing n because of the same the-
orem. In this sense, the result 1/L(E = 0) = 0 means
nothing.

Now we present our arguments as regards to the
problem of interest, from which it follows the oppo-
site conclusion to that claimed in Ref. [1]. To check
the localized or delocalized character of the zero-
energy state we examine the behavior of a? aver-
aged over realizations of the NN-interactions
U,..+1- Then, the fact that the mean value (a3, ,>
increases (or decreases) exponentially (or in some
other way but steeply enough) as a function of n can
be regarded as an indication that the corresponding
state is localized. Contrary to that, a constant value
of (a3, will imply delocalization. Let us apply
this result to establish the character of the zero-
energy state.

Let p (U, +1) be the distribution function of the
NN-interaction. Introducing the magnitude

x = Jp (x)p (,v)(%) dx dy, (6)

one can then obtain from Eq. (4)
{3y = d"ai, n =012, ... (7)

We assumed here that a; equals some fixed, non-
zero value and that the integral j'y‘zp(y)dy exIsts.
Our main goal now is to evaluate the magnitude of
x. Il x# 1 then the zero-energy state have an
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exponential dependence against n and. thercfore,
the zero-energy state is localized. On the contrary.
if x = 1 this state is delocalized. From the identity

1::‘ﬁdxnww<%>-dxdy
I W2\ 2
=1+ —JP(.\’)I’(_\‘(—‘—) dxdy. (8)
2 XY

it definitely follows that » > 1. Thus, one can con-
clude that {a?) increases exponentially with n, con-
trary to Ref. [1] as well as to Ref. [6].

3. Numerical simulations and discussion

We will mainly focus our attention on the nor-
malized density of states p(E) and on the degree of
localization (inverse participation ratio, 1PR) for
the states at energy E. They are defined. respective-
ly, as follows:

1
/)(E) = N<Z (5(E — Ek)>. (911)

k

1 a
L(E) = S(E—EQL Y ai, ) ).
J(E) N/)(E)<§ ¢ (F I‘)(";l ('kn>> (9[’))

where the angular brackets indicate an average
over an ensemble of disordered linear chains and
the a,, and E, are the solution of the eigenvalue
problem given by Eq. (3). From its definition, it can
be seen that the IPR is expected to behave as 1/N
for delocalized states, while localized states have
much larger values. In the extreme case, when the
exciton is localized at a single site, Eq. (9b) implies
that the IPR becomes unity. At this point it is
worth mentioning that the IPR by itsell does not
longer suffice to elucidate the true extended or
localized character ol eigenstates. This would re-
quire a complete multifractal analysis, accomp-
lished by studying the scaling of the IPR (and the
other moments of the probability distribution) with
the system size. We have not intended to perform
such a scaling analysis although the TPR will be
quite useful to discuss the localization properties of
states with different energies for the same values of
the physical parameters.

We solved numerically Eq. (3) for different values
of disorder (in our case, it means fluctuation of the

NN-distance, oy = ﬁo) to study the features
both of the DOS and of the IPR discussed above.
Figs. I and 2 represent the results of numerical
calculations of the DOS and of the IPR. Analysing
these data, one can observe that:
I. when the degree of disorder exceeds a certain
threshold value (oan ~ 0.02, for the parameters
of our model), a peak in the DOS at zero energy
appears. whose amplitude increases with dis-
order (Fig. 1, left). The percentage of states in the
DOS peak is 0.5 and 2.5 for oyn = 0.08 and 0.32,
respectively:
on increasing the degree of disorder the states at
the center of the band become more Jocalized
(Fig. 1. right),
the amplitude of the peak rises noticeably with
increasing the number of sites in the chain
(Fig. 2. left),
4. it can be seen (Fig. 2, right) that the state belong-
ing to the zero-energy peak of the DOS is no

(8]

98]

06 s 04
L 0.3
0.4 -
L 0.2
0.2 0.1
0, O - YT T T T 00
0.16 - 0.3
n 10 _
o 02 3
Qos
L 0.1
0.0 == . et 0.0
s 0.24 03
1.0 L 0.2
0.5 0.1
00*””% : —— 400

T420 2 4420 2
E E

Fig. 1. Plotting of the DOS (left) and of the IPR (right) with
increasing disorder, obtained in the frame of NN-coupling by
averaging over 160 chains of 500 sites. Labels indicate the
average fluctuation of the NN-distance ann.
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Fig. 2. Plotting of the DOS (left) and of the IPR (right) obtained
in the frame of NN-approximation by averaging over 100 chains
at the fixed values of disorder. o« = 0.08. Labels indicate the
lattice size.

more delocalized as compared to the rest of

states. Also notice that its IPR value is indepen-
dent of the system size.

4. Conclusions

We are led to two main conclusions. The lirst
is that the zero-energy peak of the DOS rcally

exists and tends to convert to J-singularity with
increasing the chain size. The second is that the
corresponding eigenstates are localized, as can be
drawn from the fact that the IPR increases with the
degree of disorder. This remark is further sup-
ported by the fact that the IPR at the center of the
band remains independent of the chain length, con-
trary to the expected behavior 1/N for extended
states.
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