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Frenkel excitons in one-dimensional systems
with correlated disorder
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Abstract

We consider two di!erent models to study the e!ects of correlations in disorder on optical properties of one-
dimensional Frenkel excitons. The "rst model is described by means of pairwise correlated Gaussian diagonal disorder,
where two-level molecules form dimers of equal transition energy. In the second model, disorder is produced by
uncorrelated #uctuations in molecular positions, yielding nevertheless correlations in the hopping integrals. The
peculiarities of the motional narrowing e!ect for both models of disorder are discussed in detail. In particular, it is shown
that for the con"gurational disorder, this e!ect su$ciently di!ers from that with uncorrelated randomness in the
nearest-neighbor coupling. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Discussion of excitons in solids can be traced
back more than half a century to the pioneering
work by Frenkel [1] and Wannier [2]. After nu-
merous studies on excitons over several decades,
the exciton has been well established in bulk insula-
tors and semiconductors [3,4]. In recent years, the
exciton concept has gained popularity to explain
transport and optical properties in low-dimen-
sional systems, ranging from semiconductor het-
erostructures [5] to molecular aggregates and
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conjugated polymers [6]. Wannier or Frenkel
excitons are often involved in the interpretation
of experimental data of such low-dimensional sys-
tems, although excitons may exhibit an intermedi-
ate character between those two extremes [7,8].

Disorder plays an important role in understand-
ing numerous properties of low-dimensional sys-
tems. Since the seminal papers by Anderson [9]
and by Mott and Twose [10], electronic and trans-
port properties of randomly disordered systems
have been the subject of long-lasting interest both
from the fundamental and applied viewpoints
[11}13]. E!ects of disorder in low-dimensional sys-
tems are even more dramatic than in bulk mater-
ials: Even a small amount of uncorrelated disorder
induces localization of all electronic states in one-
dimensional (1D) systems, as it was originally con-
jectured by Mott and Twose [10]. Afterwards, a
great deal of work has been devoted to examine this
conjecture (see, for instance, Ref. [14]).
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However, in the past few years, a considerable
amount of work has been devoted to establish that
localization may be suppressed and extended states
appear whenever disorder exhibits dimer-like cor-
relations [15}19]. The notion of correlated dis-
order implies that certain physical parameters in
random systems are not completely independent
within a given correlation length, thus leading to
a competition between short-range order and the
underlying long-range disorder. The interest of this
type of correlations is not merely academic since
doped polyaniline can be suitably described by the
random dimer model, hence explaining its unex-
pected high conductivity [16]. Recent experiments
on transport properties in semiconductor superla-
ttices with intentional correlated disorder [20]
present one more validation of these purely the-
oretical "ndings. Moreover, it seems that the
suppression of localization by correlations is not
restricted to dimer-like correlated disorder, but it
may also appear in the presence of other types of
intersite correlations [21].

Several stochastic processes in organic mater-
ials are known to generate correlated random se-
quences [22]. In particular, interactions with
phonons can be described by #uctuations of
transition energies [23,24] which in the long
wavelength limit (at low temperature) become evi-
dently correlated for di!erent times and di!erent
sites. Correlations may arise in a natural way in
random systems with con"gurational disorder,
even if random positions are uncorrelated, as
shown below. Within this context, a natural ques-
tion that arises is about the possible e!ects due to
long- or short-range correlations on exciton prop-
erties and how they can be inferred by using optical
techniques.

E!ects of exponential correlations of the on-site
energy disorder on exciton absorption line shape
were already investigated some years ago by
Knapp [25]. Later, Knoester showed that nonlin-
ear optical response of disordered J-aggregates
yields independent information on the size and
degree of intersite correlations [26}28]. Dimer-like
short-range correlations have already been con-
sidered in the literature, and their e!ects on exciton
trapping [29] and optical absorption spectra
[30,31] have been studied in detail.

In this paper we focus on two models of
correlated disorder to analyze how correlations
a!ects optical properties of 1D Frenkel excitons.
First, a simple pairwise model of diagonal dis-
order is considered, in which energy dimers (two
sites of equal energy) are stochastically distributed
over linear chains. In the second model, the
source of disorder lies in the uncorrelated #uctu-
ations of molecular positions giving rise, in spite of
that, to certain correlations in the hopping inte-
grals. We carry out the numerical simulations of
the exciton absorption line and use the self-consis-
tent concept of motional narrowing [32,33] to de-
scribe theoretically the scaling of the optical
observables.

2. Correlated on-site Gaussian disorder

We start with the following 1D Frenkel Hamil-
tonian for N two-level molecules (N assumed to be
even)

H"

N
+
n/1

e
n
DnTSnD#

N
+

n,m/1

J
nm

DnTSmD, (1)

where DnT is the state vector of the nth molecule
with transition energy e

n
and mOn. For our

present purposes, we assume the nearest-neighbor
interactions and then take J

nm
"!Jd

@n~m@,1
with J'0. Two di!erent systems, referred to as
uncorrelated and correlated disordered systems,
will be considered. In the "rst system, on-site ener-
gies e

n
are assumed to be statistically independent

Gaussian stochastic variables with zero mean
Se

n
T"0 and Se

m
e
n
T"p2d

mn
, where angular

brackets indicate averages over realizations of dis-
order.

To build up our correlated disordered model, we
chose N/2 independent variables e

2n~1
(n"1,2,

N/2) according to the same Gaussian distributions
as before and then take e

2n
"e

2n~1
, so that

Se2
m
T"p2, m"1, 2,2, N,

Se
m
e
m`1

T"p2, m"1, 3,2, N!1,

Se
m
e
n
T"0 otherwise.

(2)
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2.1. Perturbative treatment

We now calculate the linear absorption spectra
for small values of the degree of disorder p/J [26].
To this end, we rewrite the Hamiltonian (1) as
H"H

$
#H

0$
, where H

$
(H

0$
) stands for the

diagonal (o!-diagonal) part in the site representa-
tion, respectively. The diagonal contribution H

$
is

considered as a perturbation term. The eigenstates
and eigenenergies of H

0$
are given by

Dk0T"S
2

N#1

N
+
n/1

sin(Kn)DnT, (3a)

E0
k
"!2J cosK, (3b)

where K,pk/(N#1) and k"1,2, N. In this
excitonic representation, the matrix elements
(H

$
)
kk{

are expressed through linear combinations
of Gaussian variables e

n
with zero mean

(H
$
)
kk{

"A
2

N#1B
N
+
n/1

e
n
sin(Kn) sin(K@n). (4)

Consequently, they also have a joint Gaussian dis-
tribution. Since S(H

$
)
kk{

T"0 for all k and k@, the
joint Gaussian distribution is characterized by
its covariance super-matrix B

k1k
@
1,k2k@2

,S(H
$
)
k1k

@
1

(H
$
)
k2k

@
2
T. Since in what follows we will deal only

with one exciton transitions, the matrix elements
B
kk{

,B
kk{,kk{

"S(H
$
)2
kk{

T will consequently be the
subject of our analysis.

Since the state k"1 carries almost the entire
oscillator strength of the system, in the perturbative
limit the optical absorption spectrum is dominated
by a Gaussian peak centered at E0

1
with standard

deviation p
1
,JB

11
[26]. According to this rule,

we obtain [32}34]

p6
1
"S

3

2

p2

N#1
(5a)

and

p#
1
"S3

p2

N#1
, (5b)

where subscripts u and c refer to uncorrelated and
correlated disorder, respectively.

As it can be seen from Eq. (5), both magnitudes
scale as N~1@2, showing the so-called motional nar-
rowing e!ect [25]. In addition, the standard devi-
ation is larger for correlated inhomogeneous
broadening and the di!erence increases on increas-
ing p. Similar conclusions were drawn by Knapp
[25], Knoester [26] and Fidder et al. [35] for
chains with long-range correlated disorder as well
as in Ref. [31] by solving the microscopic equation
of motion for the present problem. The two times
increase of the numerical prefactor of p2

1
, from 3

2
to

3, upon introducing intersite correlations simply
re#ects the fact that for pairwise correlated dis-
order, a dimer (two sites with equal energies) should
be considered as a single unity. In other words, the
e!ective number of sites involved in the motional
narrowing e!ect is now determined by the chain
length N counted in units of the energy correlation
length N

#
(being two in our case), and thus appears

two times smaller compared to the former. The
generalization of this result to an arbitrary value of
N

#
is straightforward and simply consists of replac-

ing the factor 3
2

by (3
2
)N

#
when passing from Eq. (5a)

to Eq. (5b).
Regarding the exciton optical response we are

dealing with, mixing of the lowest state (k"1) with
the others is of major importance. Hence, one
should compare the energy di!erence E0

2
!E0

1
K

3p2J/(N#1)2 with the typical #uctuation of

(H
$
)
21

represented by JB
21

. The perturbative ap-

proach is valid provided JB
21
(E0

2
!E0

1
and fails

otherwise. Thus, the equality

JB
21
"

3p2J

(N#1)2
(6)

determines a value of p (for a "xed chain length N),
which separates the ranges of perturbative and
nonperturbative magnitudes of disorder, where
B
21

in the limit N<1 is given by

B6
21
"

p2

N#1
, (7a)

B#
21
"

2p2

N#1
(7b)

for uncorrelated and correlated disorder, respec-
tively. Note that B#

21
is also two times larger than
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B6
21

similar to that found for the corresponding
diagonal matrix elements of B. As in the previous
case, the generalization of this result to an arbitrary
N

#
is achieved by replacing the factor 2 by N

#
in

Eq. (7b).

2.2. Coherently bound molecules

For higher values of disorder (JB
21
'E0

2
!E0

1
)

the perturbative approach fails since not all mol-
ecules of the chain contribute to the optical spec-
trum, but only a portion of them, referred to as the
number of coherently bound molecules, NH [25].
This number can be estimated in a self-consistent
way by applying the perturbative criterion to a typ-
ical localization segment, namely replacing N by
NH in Eq. (6) [32}36]. The number of coherently
bound molecules then is given by [32,33]

NH#1"A
3p2J

JBH
21
B

1@2
, (8)

where one should take BH
21

according to Eq. (7) and
replace N by NH. Finally, one gets

p6
1
"S

3

2

p4@3

(3p2J)1@3
(9a)

and

p#
1
"(54)1@6

p4@3

(3p2J)1@3
(9b)

for uncorrelated and correlated disorder, respec-
tively. Notice that p6

1
(p#

1
, as occurs in the pertur-

bative limit. The generalization of Eq. (9b) to the
case of N

#
-correlated on-site energies reads

p#
1
"S

3

2
N2@3

#

p4@3

(3p2J)1@3
. (10)

2.3. Numerical results and discussion

We have obtained numerically the absorption
line shape according to Ref. [35]. We will "x the
value J"1 and focus our attention on the stan-
dard deviation p, ranging from 0.05 up to 0.50. We
have diagonalized the Hamiltonian (1) for chains of
N"250 with free-end boundary conditions. The

Fig. 1. Absorption spectra for one-dimensional random lattices
with Gaussian distribution of uncorrelated (upper curve) and
correlated (lower curve) on-site energies with p"0.25.

number of randomly generated systems is 1000 for
each value of p.

We show in Fig. 1 an example of the optical
absorption spectra for uncorrelated and correlated
disordered systems. The main absorption band
shows the characteristic asymmetry discussed in
detail for uncorrelated disorder in Refs. [23,24,
35,37]. In all the cases we have studied, we found
that (i) the standard deviation p

1
is larger for corre-

lated inhomogeneous broadening and (ii) the di!er-
ence growths as p rises. These "ndings are in
agreement with our theoretical estimates.

Fig. 2 shows that p
1

scales as p4@3 for both
uncorrelated and correlated disorder, as predicted
by our estimates (9a) and (9b). The standard devi-
ation of the spectra can be parameterized as p

1
"

Cp4@3/(3p2J)1@3, where the constant is C
6
"1.42

and C
#
"2.17 for uncorrelated and correlated dis-

order, respectively. These values are slightly larger
than those obtained from estimates (9a) and (9b),
namely C

6
"1.22 and C

#
"1.94; nevertheless, the

coincidence should be admitted as being highly
surprising. Note that the value C

6
"1.42 is in

agreement with that obtained by the other authors
[23,24,35,38}40].

Let us now discuss the problem whether or not
the information relative to intersite energy correla-
tions can be revealed from the linear exciton optical
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Fig. 2 . Standard deviation p
1
as a function of p4@3 for correlated

and uncorrelated disordered systems. Solid lines represent the
least-squares "ts.

response, having in mind the application to linear
aggregates of dye molecules (namely, J-aggregates).
As it is well known (see, for instance, Ref. [25] and
references therein), optical excitations in these sys-
tems are Frenkel excitons. The width of the absorp-
tion spectrum p

1
will be the observable providing

the data of interest. The numerical factor C"

J3/2N2@3
#

in the dependence p
1
(p) [see Eq. (10)],

equal to C
#
"2.17 in our particular case of pairwise

intersite correlations (N
#
"2), di!ers from that for

the case of the absence of correlations (C
6
"1.42).

Therefore, this coe$cient carries the necessary in-
formation. To determine C one should measure
three parameters: J, p

1
and p. The magnitude of

intersite coupling J can be measured with appro-
priate precision from the dimer absorption spec-
trum of dilute dye solutions, when the aggregation
does not take place. The absorption band of J-
aggregates usually appears as an isolated peak, so
that its width p

1
is also rather easily measured.

With regard to p, one should assume that its mag-
nitude can be determined from the monomer ab-
sorption spectrum. Then, we get all the parameters
to be "xed in order to calculate the necessary
constant C. Exceeding C over 1.42 means that the
correlations are present in the system.

Often, the spectra of monomers are usually struc-
tured even at low temperature. In such cases, the

determination of their width p seems highly ques-
tionable. In turn, the analysis of two-exciton
transitions, present in the nonlinear optical re-
sponse from the system, can serve as an appropriate
method to probe the presence of intersite energy
correlations [26,41].

3. Con5gurational disorder

An example of a natural correlated disorder is
o!-diagonal disorder created by the #uctuations in
molecular positions around a regular lattice. For
the sake of simplicity, let us consider a circular
chain with the intersite interaction of dipole origin,
so that J

nm
"J/Dn!m#m

n
!m

m
D3 in Eq. (1), where

m
n

is the deviation of the nth molecule from its
regular position, which we suppose that it occurs
only along the directions toward the two adjacent
molecules. This restriction allows us to replace the
#uctuations of vector positions by scalars and does
not a!ect the conclusions given below in any way.
Despite assuming that m

n
and m

m
are uncorrelated,

hopping integrals appear to be correlated. Indeed,
let us consider for the sake of simplicity these inte-
grals for the nearest neighbors, J

n~1,n
and J

n,n`1
,

and their #uctuations created by the deviation of
nth site, linear in m

n
. Evidently, dJ

n~1,n
"!3Jm

n
while dJ

n,n`1
"3Jm

n
, just con"rming our claim.

In the excitonic representation, the #uctuation of
the intersite interaction

dJ
mn
"

J

Dn!m#m
n
!m

m
D3
!

J

Dn!mD3

can be written in the form

D
KK{

"

1

N
+
mn

dJ
nm

e*(Kn~K{m), (11)

where K"2pk/N belongs to the "rst Brillouin
zone: !(N!1)/24k4(N!1)/2 (N is assumed
to be odd). The site index n lies within a symmetric
domain, namely !(N!1)/24n4(N!1)/2. In
what follows, we assume that the standard devi-
ation p is small, expanding then dJ

nm
in Eq. (11) in

Taylor series with respect to

2(n!m)(m
n
!m

m
)#(m

n
!m

m
)2

(n!m)2
.
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To treat the optical properties of the aggregate, the
important wave numbers K and K@ are the smaller
ones, namely DKD, DKD@;1. Then, replacing the ex-
ponential factors by unity in Eq. (11), one "nds that
terms linear in m

n
disappear due to correlations

outlined above. Hence, the typical #uctuation of
D
KK{

for DKD, DK@D;1 scales in fact as p2. The exact
treatment of this problem shows that for the mean-
square deviation of D

KK{
, de"ned as p2

KK{
"

SD2
KK{

T!SD
KK{

T2, where brackets denote the aver-
age over the probability distribution of Mm

n
N chosen

here to be uncorrelated Gaussians with variance p2,
one can arrive at [42]

p2
KK{

"

36J2

N
(K!K@)2p2(1#40p2)#

1728J2

N
p4.

(12)

This result di!ers from that for uncorrelated diag-
onal disorder when the corresponding magnitude
scales as p2/N, with p2 being the variance of the site
energy distribution [25]. The same behavior (pro-
portional to p2/N) appears as well when one simu-
lates o!-diagonal disorder by uncorrelated
randomness in the nearest-neighbor hopping inte-
grals [39,43] (here, p2 stands for the variance of the
corresponding distribution).

With respect to the o!-diagonal elements of p2
KK{

,
we should note that, in spite of the fact that the "rst
term scales as p2, it has an additional suppression
factor proportional to (K!K@)2&N~2, much
smaller than the fourth order one. Nevertheless, if
the "rst term in Eq. (12) dominates, then p2

KK{
J

p2/N3, while in the opposite case one has p2
KK{

J

p4/N. Both results also di!er from the scaling
law p2/N found for the other types of disorder
[25,39,43].

Numerical simulations of optical properties of
linear molecular aggregates with o!-diagonal dis-
order generated by Gaussian uncorrelated #uctu-
ations in the molecular positions yielded di!erent
behaviors of the optical observables as compared
to those for diagonal disorder [35]. The peculiari-
ties found in Ref. [35] can be qualitatively ex-
plained from the viewpoint of the modi"ed formula
(12). In particular, we will focus on the dependence
of the standard deviation of the absorption band,
p
1
, and the radiative rate enhancement factor on

the degree of disorder p. The radiative rate en-
hancement factor is approximately given by the
number of coherently bound molecules NH, while
p
1

can be estimated from p
KK

replacing N by
NH [25]. Thus, the number NH is, in fact, the unique
quantity determining the observables we are inter-
ested in. In our estimate of NH, we will keep only
the second term in Eq. (12) and take the exciton
energy spectrum in the nearest-neighbor approxi-
mation: E

K
"2J cos K+2J!JK2. Following the

simple rule for estimating NH discussed in Section
2.2 one can arrive at

NH"A
p4

108B
1@3

p~4@3+p~4@3. (13)

Estimating now the standard deviation p
1

as p
KK

replacing N by NH, we "nd

p
1
"J1728Jp8@3+42Jp8@3. (14)

Notice that for diagonal disorder the correspond-
ing quantities scale as p~2@3 [33] and p4@3 [23,24,
32,35,38,40], respectively.

Using the parameterization pa, Fidder et al. [35]
found that their numerical data for NH and p

1
were

"tted by a"!1.64 and a"2.84, respectively.
Comparison of these data with our results (13) and
(14) shows that the numerical p-scaling of both
quantities is reproduced rather well by the theoret-
ical results.

4. Summary

We have considered two di!erent models of
Frenkel chains where energy disorder is correlated.
In the "rst model, disorder is a dimer-like diagonal
disorder, namely site energies always appear at
random to pairs, similar to that found in polyani-
line [16]. We have shown that both for pertur-
bative as well as for non-perturbative magnitudes
of disorder, the width of the main absorption line of
the optical spectra increases under the occurrence
of correlations. Most important, our results can be
easily generalized to larger correlation lengths
N

#
'2. We have also suggested a possible way to

determine whether or not correlations are present
in the system from its linear optical response.
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On the other hand, the second model of corre-
lated disorder that is presented arises naturally
in those systems with con"gurational disorder,
coupled by the dipolar interaction. We have dem-
onstrated that hopping integrals are in fact corre-
lated, even if positions are completely uncorrelated.
As a major point, we have shown that motional
narrowing e!ect is essentially di!erent to that pre-
viously found for uncorrelated o!-diagonal dis-
ordered systems.
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