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Abstract

We study numerically the localization–delocalization transition in a class of one-dimensional tight-binding

Hamiltonians H with non-random power-law inter-site coupling Hmn ¼ J=jm � njm and random on-site energy. This

model is critical with respect to the magnitude of disorder at one of the band edges, provided 1omo3
2
: We demonstrate

that at some value of the magnitude of disorder Dc; interpreted as the critical one, the ratio of the standard deviation to
the mean of the participation number distribution is a size-invariant parameter: all curves of this ratio versus the

magnitude of disorder, plotted for different system sizes, have a joint intersection point at Dc: This value is finite for
1omo3

2
implying the existence of the transition, while in the marginal case (at m ¼ 3

2
) the intersection point is at Dc ¼ 0

implying localization of all the eigenstates.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, a vast amount of work has been
devoted to studies of Frenkel excitons in low-
dimensional molecular aggregates, where the inter-
play of disorder and long-range dipole–dipole
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coupling determines fundamental physical proper-
ties [1]. It has been argued, for example, that two-
dimensional Frenkel excitons display anomalous
localization properties of the states, which deter-
mine the linear absorption spectra of the aggre-
gates [2]. To deepen our understanding of these
underlying phenomena, we consider a general
tight-binding Hamiltonian H on a regular one-
dimensional (1D) lattice with non-random long-
range inter-site coupling Hmn ¼ J=jm � njm with
1omp3

2
and uncorrelated diagonal disorder [3,4].

We find a localization–delocalization transition
(LDT) with respect to the magnitude of disorder at
the upper band edge provided 1omo3

2; this
transition resembles the one in the standard
three-dimensional Anderson model [5]. In the
d.
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marginal case ðm ¼ 3
2
Þ; all eigenstates are found to

be localized. In this case, the considered model is
similar to the two-dimensional Frenkel Hamilto-
nian (see Ref. [4] for details) where the states are
weakly localized. Thus, higher dimensional models
can be mapped onto the considered one.
Level and eigenfunction statistical properties at

criticality (both the mobility edge or LDT) reveal
specific features due to the critical nature of the
eigenstates [6]. Therefore, analysis of these proper-
ties provides a tool to detect a critical point. In this
work, we show, in particular, that the relative
fluctuation of the participation number is scale-
invariant at the transition within the considered
model. We argue that this invariance is a general
property at criticality and propose to use this
invariance for calculation of the critical magnitude
of disorder. To the best of our knowledge, this
general property has never been used for such a
purpose. To test the validity of the proposed
method, we compare the results with those
obtained from the traditional level statistics
analysis and find a good agreement.
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Fig. 1. Disorder scaling of the ratio SDPN/MPN for different

system sizes at m ¼ 4
3
:

2. Model Hamiltonian and monitoring tools of a

LDT

We consider a general tight-binding Hamilto-
nian H on a 1D regular lattice with N sites. In the
site representation, the diagonal elements of the
Hamiltonian (site energies) Hnn ¼ en are stochas-
tic variables, uncorrelated for different sites and
distributed uniformly around zero within an
interval of width D: Off-diagonal elements (hop-
ping integrals) are Hmn ¼ J=jm � njm with 1omp3

2

and man: Hereafter we assume that J > 0; thus
the LDT is expected to occur at the upper band
edge provided 1omo3

2
(see Refs. [3,4] for details).

We perform numerical analysis of size and
disorder scaling of the first two momenta of the
participation number (PN) distribution: the mean
participation number (MPN) and the standard
deviation (SDPN). The PN is defined as Pn ¼
½
PN

n¼1jcnnj
4��1; where cnn is the nth normalized

eigenstate of the Hamiltonian H: As the LDT
occurs at the top of the band, we analyze disorder
and size scaling of the two momenta for the
uppermost state. Open boundary conditions are
used in all calculations. We take advantage of the
Lanczos method to calculate the extreme eigen-
functions and eigenvalues for large system sizes
(up to NB6� 104 sites) and two particular values
of the interaction exponent: m ¼ 4

3
(the LDT is

expected to occur) and m ¼ 3
2
(the marginal case; all

states are expected to be localized).
Fig. 1 shows the disorder scaling of the ratio

SDPN/MPN for m ¼ 4
3
and different system sizes.

The figure demonstrates that all SDPN/MPN
curves have a non-trivial joint intersection point
at Dc ¼ 10:0� 10:5 J (see below for the discussion
of the slight dependence of the intersection point
on the system size). At this point the ratio SDPN/
MPN is a size-invariant parameter, so we con-
jecture that this is the transition point. Note also
that, at this point, both the MPN and the SDPN
are of the same order of magnitude for any system
size, as was found for the case of power-law
random banded matrices [7]. The size invariance of
the relative fluctuation is a direct consequence of
the general multifractal nature of wave functions
at criticality and therefore this invariance is also a
general property. This provides grounds to claim
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Fig. 2. Size dependence of the upper-band edge EðNÞ [in units

of its asymptotic value EðNÞ] and the normalized intersection

point, DðNÞ=DðNÞ; at m ¼ 4
3:
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that the proposed method of the critical point
detection is applicable for other LDTs.
We have also computed the ratio SDPN/MPN

for the marginal case ðm ¼ 3
2
Þ and found that the

only joint intersection point of all SDPN/MPN
curves is at Dc ¼ 0: Thus, no signatures of the
LDT appear in the marginal case. Recall here that
at m ¼ 3

2
; the relationship between the level spacing

at the upper edge of the bare band and the
effective disorder (reduced by the quasi-particle
motion) is exactly the same as in the center of the
2D band within the standard Anderson model [4],
where the states are weakly localized [8]. This
analogy provides support for the localized nature
of the states and hints also that the localization
length may be very large in this case.
Contrary to the standard Anderson model, the

contribution of off-diagonal terms to the Hamil-
tonian H converges slowly on increasing the
system size. This results in the dependence of the
band width (actually, the upper edge) on the
system size: the band is wider for larger systems.
This means that the same disorder is effectively
stronger for smaller systems. This effect introduces
a regular dependence of the critical point on the
system size. Fig. 2 shows both the upper band edge
EðNÞ in units of its asymptotic value EðNÞ; and
the intersection point DðNÞ [with its maximum
value fitted to EðNÞ=EðNÞ] as a function of N for
m ¼ 4

3
: The values DðNÞ are intersection points of

the pairs of SDPN/MPN scaling curves from Fig.
1 for subsequent system sizes; each point is
attributed to the maximum system size of the
intersecting pair of curves. The figure demon-
strates that the band edge shift provides the
dominant contribution to the size dependence of
the intersection point for large systems. It allows
also to determine the limiting value of the
intersection point, in other words, the critical
point in the thermodynamic limit. This value can
be estimated as DcE10:9 J:More detailed analysis
of finite-size effects are to be published elsewhere.
To test our predictions against traditional

techniques of critical-point detection, we focus
also on the level statistics analysis. To this end, we
calculate numerically the energy spacing of the two
uppermost states for different realizations of
disorder. After normalizing by the mean level
spacing (MLS), we obtain the standard deviation
of the normalized distributions (SDLS/MLS). At
the LDT this distribution should be independent
of the system size [9]. Consequently, the disorder
scaling curves of the normalized standard devia-
tion plotted for different values of N are expected
to intersect at the transition point. Fig. 3 shows
such curves for m ¼ 4

3
and demonstrates that all the

curves have a non-trivial joint intersection point at
Dc ¼ 10:7� 11:4 J: This value is slightly larger on
average than that obtained by the PN statistics
analysis method. This difference is related to the
finite size effects partly discussed above (see
discussion of Fig. 2). The critical points obtained
by the two methods are in good agreement.
Compared to traditional level statistics analysis,
the proposed method appeared to be more efficient
in terms of the number of realizations we had to
consider to obtain reliable results.
In summary, we studied numerically the 1D

Anderson model with non-random long-range
power-like coupling, Jnm ¼ J=jn � mjm; J > 0:
Our simulations confirm the prediction that this
model is critical for the range 1omo3

2
and
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Fig. 3. Disorder scaling of the standard deviation of the

distribution of normalized level spacing for different system

sizes and m ¼ 4
3
:
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undergoes the localization–delocalization transi-
tion at the upper band edge [3,4]. We prove
numerically the general conjecture that the ratio of
the standard deviation to the mean of the
participation number distribution is a scale-invar-
iant parameter at criticality. This finding provides
a new general efficient method to monitor a LDT:
the joint intersection point of the SDPN/MPN
disorder-scaling curves, plotted for different sys-
tem sizes, yields the transition point. We find, in
particular, that at m ¼ 4

3
the critical point is Dc ¼

10:970:5 J: In the marginal case ðm ¼ 3
2
Þ; the only

joint intersection point is at Dc ¼ 0; indicating that
all states are localized. The marginal case is the
most relevant one in the context of molecular
aggregates since it can be mapped onto the two-
dimensional Frenkel Hamiltonian [4]. We can then
conclude that two-dimensional Frenkel excitons
are localized.
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