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Abstract. Scattering of positive and negative energy Dirac particles moving under the
action of vector and scalar point interaction potentials faced to an impenetrable wall has
been discussed. The occurrence ol a well defined resonance pattern is only found for scalar
couplings.

1. Introduction

In a recent paper (Dominguez-Adame and Macia 1989a), bound states of the one-
dimensional Dirac equation for vector plus scalar point interaction potentials have
been obtained. The term point interaction potential refers to any arbitrary sharply
peaked potential approaching the delta-function limit (zero width and constant area).
Such potentials are often used in some physical problems-solid state physics
(Dominguez-Adame 1989) or nuclear physics (Dominguez-Adame and Macid 1989b)—
to approximate more complex short-ranged potentials. Vector potential means that the
potential is multiplied by the same Dirac matrix as the patticle energy, while a scalar
potential may be regarded as a position-dependent mass. Therefore, vector potentials
couple the charge whereas scalar potentials couple the mass. Hence a short-ranged
scalar potential could be originated from the exchange of massive scalar mesons
between particles, in the same way as a vector field arises from the exchange of vector
bosons.

The aim of this paper is to study the scattering of Dirac particles by point interaction
potentials in one-dimension. We discuss virtual states and resonances for both vector
and scalar potentials. Using an S-matrix formalism, bound states are also obtained,
in agreement with previous works (Dominguez-Adame and Macia 1989a). We restrict
the motion of particies to positive values of the coordinate, so the potential we consider
is formed by a point interaction potential in front of an impenetrable wall. Hence the
solutions we find may be used as a guide to get some insight into three-dimensional
relativistic scattering problems with contact operators {Dominguez-Adame 1990).

2. Relativistic scattering in one dimension

The potential we consider varies in the x direction (say) so the up and down spin
states will be degenerate. Hence the wavefunction of the Dirac particle is expressed
by just two independent components (Glasser 1983). The Dirac equation in one
dimension can be written as (hk=c=1)

lap+Bm+U(x)—El¢(x)=0 (1)
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where o and B are 2% 2 Hermitian traceless matrices with square unit and a8 + Sa =0
(McKellar and Stephenson 1987). In the standard representation & = ¢, and 8 =0,
's being the Pauli matrices.

The mixed potential is chosen of the form

(2)

U(x)={gv+“zgs)U(X—a) izg

where v(x) is any arbitrary function approaching the 8-function limit, g, and g, are
the vector and scalar coupling constants, respectively, and @ >0 is a real parameter.
The point interaction potential may be considered just like boundary conditions
on the wavefunction at the point x = a. Whereas one could integrate the Schrodinger
equation around that point to obtain the required boundary condition, this procedure
does not hold for the Dirac equation at all. The reason comes from the fact that the
Dirac wavefunction becomes discontinuous for such a potential (in the non-relativistic
case, however, only the first derivative of the wavefunction becomes discontinuous
{Fliigge 1974)), and the integral of §(x)¢(x) is not well defined in strict distribution-
theory sense (McKellar and Stephenson 1987). To surmount this difficulty the Dirac
equation (1} is written as dy//dx = G(x)¢r(x), where G(x)=—io (o.m+ U(x)—F) is
a 2 x 2 matrix. In so doing, the Dirac equation admits a Neumann series solution (by
analogy with the time-dependent Schrédinger equation) which only requires the integra-
tion of U(x) (approaching the §-function) between the limits @ —0 and a+0 (this
procedure is fully explained by McKellar and Stephenson (1987) and Dominguez-
Adame and Macid (1989a) so we shall omit here any detail). The obtained boundary
conditions become independent of the exact form of v{x) and are written in the
standard representation as follows
1 —la_

la +O)=cos(gi-g§)”2( ):b(a—O) (3)

—ja, 1

where a, = (g, g.) tan(gZ—g2)"/?/ (g2 —g2)"'* are always real numbers. Note that the

boundary condition (3) becomes periodic for pure vector potentials (g, = 0) since
o, =tan g,, while this periodicity is absent for pure scalar potentials (g, = 0), because
«a. = +tanh g, in that case.

In order to obtain a complete solution of the problem, boundary conditions at the
impenetrable wall should also be specified. We shail find again some differences with
the non-relativistic case. For relativistic particles the current ¢ o = 2 Re(w¥ ) must
vanish at x =0, since there is no particle for x <0 (¢, and ¢, denote here the upper
and the lower components of the wavefunction). This can be achieved if i, or ¢,
vanish at x =0, although both components cannot simultaneously equal zero, as seen
from (1). To get the correct non-relativistic limiting behaviour, i.e. the larger component
going down to zero at the wall, we set 4,(0) =0 for particle solutions and ,{0) =0 for
antiparticle ones. Hence the wavefunction becomes

sin px
Al =l 0<x<a
Cos px
E+m p (4a)
=< 4a
v(x) sin{ px+8.)
Al -ip x>a
+
Erm cos( px +8,)
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for E=+{p°+m*)"?*>0 and

A E—mmswC 0<x<a
sin px
g(x)= . {4b)
. cos(px+8_)
A E—mmS p N x>a
sin( px-+8_)

for E=—(p>+m?)'"?<0. A, are the amplitudes and &, are the phaseshifts, defined
in a way exactly analogous to the non-relativistic case. Hereafter the upper and the
lower signs refer to positive and negative energies, respectively.

After using the boundary condition at x = a, we have for the amplitudes

\ . 5 E¥m Extm . 2
|Ai(p)|‘*:cos‘(gswg;)”z[l + (E " m) al cos® pa +(E - m) @’ sin® pa
E+m P .
+( P ai—EimaT)51n2pa:| (5)
and for the phaseshifis
p Etm k
+ = - + .
tan{ pa+ 8.} =tan pa (Erm) a;[l ( - )aitanpa} {6)

For weak coupling at low energies, both expressions (5) and (6) reduce to the obtained
results by solving directly the Schridinger equation for a 8-function potential in front
of an impenetrable wall (Fliigge 1974). For strong coupling, however, a relativistic
wave equation is indeed required, even at low energies.

Bound states of the potential can be computed directly from the § matrix, as occurs
in the non-relativistic treatment. For potentials vanishing beyond some finite distance,
the poles of the § matrix in the upper half p plane lie along the imaginary axis, and
these poles correspond to bound states of the system (Berestetskii ef al 1971). The §
matrix is related to the phaseshift by $=8, =exp(2id.)=(1+itan 5.)/(1—itan §.).
From (6} we obtain S.(p) = ¢.(—p}/¢.(p), where the Jost functions

EFfm

E+tm\ . . . .
¢.(p)= 1+( )e"’“ sin pa a1+1( )e”’“ COs pa a4 (7)
satisfy the usual condition ¢,(—p*)=¢*(p). We replace p by ig, where ¢g=
+(m*—E?)"? is real for bound states. Therefore, the condition for bound states is
simply written as ¢.(ig) =0, so the energy levels can be computed from the following

transcendental eguation
2g=(E+m)(1-e **)a, +(EFm}1+e a-. (8)

Neglecting the effects of the wall on the energy levels (i.e. taking the limit @ - o so
the particle moves in the whole space}, the bound states of a single point interaction
potential are obtained, in agreement with previous results (Dominguez-Adame and
Macid 1989z). It is not necessary to solve the trascendental equation (8} to obtain the
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exact number of bound states supported by the potential, since the Levinson theorem
is still valid in the relativistic framework (Ma and Ni 1985, Arshansky and Horwitz
1989 and Klaus 1990). The relativistic generalization of the Levinson theorem, which
become more simplified in one-space dimension due to the absence of spin effects or
centrifugal barrier, provides a link between the discrete and the continuum parts of
the energy spectrum. The theorem requires the calculation of the phaseshift as E
approaches +m. For point interaction potentials, a bound state of positive (negative)
energy appears if §,(0) = ar (8 (0) = ), while the vanishing of &.(0) (8_(0)) indicates
the non-existence of bound states of positive (negative} energy. One half-bound state
(positive or negative) appears whenever the phaseshift at zero momentum (8.(0) or
5_(0) respectively) reaches the value /2. Such states are not in fact bound states
because the wavefunction is not square-integrable, but they are characterized by the
accurrence of an infinite scattering amplitude at zero momentum.

3. Results and discussion

In order to avoid the profusion of free parameters we set a=m"' in our numerical
results, i.e. a equals the Compton particle wavelength. Therefore, the remainder
parameters are the potential strengths g, and g,. Due to the different behaviour of
vector and scalar potentials, we shall discuss both cases separately.

3.1. Scalar potential

General features of the scattering states for particles with positive and negative energies,
moving under the action of a scalar point interaction potential in front of an impen-
etrable wall, are shown in figures 1-4.

The amplitude |A.]* given by (5} is plotted in figure 1. The occurrence of resonance
peaks for certain potential strengths is clearly seen in this figure. The resonance pattern
depends on the sign of the particle energy. The position of the resonance peaks do
not show strong dependence with the potential strength g,, in agreement with the fact
that such positions are related to the energy levels of a particle between two impenetrable
walls separated by a distance a. The former assertion could be explained if we consider
the asymptotic expression of |A.(p)|* for large p values, which is found to be

|A(p)]*~ (1+2sinh® g,=sin 2pa sinh 2g)" p-—> 0. (%)

Hence, imposing the extreme condition d|A.|*/dp =0, positions of the peaks are given
by p, = (2n+1)7/4a, where n is a positive integer, and its allowed values are summar-
ized in the following table

E
£, Positive Negative
Positive n=1,3... n=24 ...
Negative n=24,... n=1.3,...

No resonances are associated to the case n = 0. Note that, aithough positions described
by the condition p, = (2n+1)7/4a has been obtained in the limit of large momenta,
figure 1 shows that there exists a good agreement even for low momenta. The extreme
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Figure 1. The square modulus of the amplitude for a panicle of positive energy subjected
to a scalar point interaction potential in front of an impenetrable wall for g, = +0.549 ...
{full curve}, —0.549 . .. (¢hain curve), 1.5 {dotted curve) and —1.5 (broken curve). Scattering
amplitude corresponding to a particle of negative energy is obtained replacing g, by —g,
in the figure.

condition d|A.[/dp =0 applied directly in (5) leads to the following transcendental
equation

pa sin pa -2p*a*(1+pa’) cos 2pa
(1 +p2a2)(2pa sin 2pa ~+cos 2pa)—2(1 +p2a2)”2

tanh g, = =f(p) (10)
from whose solutions the position of resonance peaks can be computed. A graphical
method for solving (10) is depicted in figure 2 (we consider only positive energies;
analogous comments could be stated for negative energies), As seen in this figure, the
exact solutions of (10) approuach those given by p, = (2n-+1)7/4a from the right (left)
for repulsive (attractive) potentials as the limit {g,| = 0 is taken.

The zero-momentum scattering amplitude is given by

[A.(0)]* = (cosh g,+2sinh g,)~*

which rapidly increases as the potential strength g, approaches the values +gf=
£logv3. Such a phenomenon is related to the binding properties of the potential, and
will be discussed later.

Now let us comment the scattering phaseshift given by (6). From figure 3 is clear
that resonances becomes sharper as the strength of the potential increases but, unlike
the non-relativistic case (Van Sinclen 1988), the sign of the phaseshift does not appear
to be correlated to the attractive or repulsive character of the potential. In the vanishing
particle momentum limit we have

0 8> —gf
lim 8.(p) =1 7/2 g.=—gf (11)
! T g < —gk.
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Figure 2. Graphical method to obtain the position of the amplitude resonant peaks corre-
sponding to positive energy particles under scalar coupling. Open circles denote the position
of resonance peaks for positive (upper hatf-plane) und negative {lower half-plane) values

of the scalar strength g, -
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Figure 3. Scattering phaseshift plotted as a function of pa for particles of both positive

and negative energies subjected to a scalar coupling for g, = —(1.549 ... (dotted curve),
+0.549 ... (broken curve), —1.5 {full curve) and 1.5 (chain curve).
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The limit given in (11) partially agrees with the non-relativistic result obtained by Van
Sinclen. The main difference is the exact value of g¥F; in our results we have obtained
g¥=10.549 ... while Van Siclen has deduced a value of 0.5 for non-relativistic particles.
According to the Levinson theorem (Ma and Ni 1985), two half-bound states (positive
and negative) occur as g, equals the critical value —g¥. Starting from a potential
strength larger than —g¥, we note that only scattering states may occur; by decreasing
g. until the critical value —g¥ is reached; two half-bound states appear. By further
decreasing of g, just below —g¥ one bound state of either energy sign occurs, and the
phaseshift at p =0 jumps to #. Thus the phaseshift evolution is not continuous. Instead
it shows a clear cut-off between binding and non-binding potentials. As we pointed
out above, just for the critical coupling g,= —g¥ the value §.(0)= /2 is reached.
However, this jumping behaviour is a typical feature describing the particle phaseshift
evolution passing through a resonant state. Thus, from the above considerations, we
are led to the conclusion that a zero-momentum particle interacting with a potential
of strength g. = —g¥ undergoes a resonance rather than a bound or virtual state. Note
that the amplitude becomes infinite at p =0 as g. = —g¥ only for positive energies. On
the other hand one finds an infinite amplitude at p =0 as g, = +g¥ for negative energies
as well, but in this case §.(0) =0, so it should be considered as a virtual rather than
a resonance state,

To get further insight, we study the S-matrix poles given in equation (8}. The bound
state energy must satisfy the relationship

qa
1-(1—g a)"? exp(—2qga)

tanh g, = (12}
where E =<x(m”—g”)"% Since the right-hand side of (12) remains always negative,
only attractive potentials could support bound states at first. Taking the limit g - 0 in
(12) we obtain g(g=0)=—tanh '(1/2)=—logv3=—g¥*. Therefore, only attractive
potentials with g, less than —g* present binding of particles, no matter the sign of the
energy (i.e. bound states do appear in pairs (Coutinho and Nogami 1987) since (12)
does not depend on the sign of the energy). This treatment completely agrees with our
previous discussion about the phaseshift (11). Binding properties of the system as a
function of the scalar potential strength are depicted in figure 4.

-9 o] +Q;

4 + & gs
BINDIRG I NON-BINDING
POTENTIALS | POTENTIALS
|

Figure 4. Binding properties of the system as a function of the scalar potential strength,
Open and full circles denote the occurrence of a virtual state and of a zero-momentum
resonance, respectively.

3.2. Veetor potential

Figure 5 shows the scattering amplitude for positive and negative energy states. A
comparison between this figure and figure 1 clearly demonstrates that resonant peaks
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Figure 5. The square modulus of the amplitude for a particle of positive energy subjected
to a vector point interaction potential in front of an impenetrable wall for g, =0.464 ...

{dotted curve), —0.464 . .. (chain curve), —1.5 {broken curve} and 1.5 (full curve). Scattering
amplitude for a particle of negative energy is obtained replacing g. by —g, in the figure.

are lower and broader for vector couplings than for scalar ones. In fact, for a given
g., resonant peaks slowly decrease and approach the limiting value |A. > 1 for large
momenta. As a consequence, high energy particles in a vector point interaction potential
faced to an impenetrable wall do not show resonances at all.

The extreme condition applied to the amplitude (5) as g, # 0 and g,=0 leads to
the following conditions

sing,=0 (13a)

pzaz(l +p2a2)1/2 sin pa —2p2a2(1 +p2a2) cos 2pa (13b)
(1+ p*a®)(2pa sin pa+cos 2pa)—2(1+ p*a®)'’*

tan g, =

The set of solutions related to (13a} corresponds to g, = A, » being an integer. For
these values of g, the potential becomes absolutely transparent to all energies, as can
be deduced from a detailed analysis of the transmission coefficient (Dominguez-Adame
and Macia 1989a). Solutions of (13b) are associated with both maxima and minima
amplitude positions. Such solutions are more difficult to obtain than for the pure scalar
potential case, but once again peak positions do not strongly depend on g,, as seen
in figure 5.

The limit of the amplitude at zero-momentum is readily found to be |A,(0)|°=
(cos g.+2sin g,) °, resembling the scalar potential case, Nevertheless, now we have
an infinite set of coupling constants for which the amplitude at the origin becomes
infinite. These special values of the coupling constant are g,=Fg¥, where gf =
tan”'(1/2)+ nw =+0.464 ...+ nm, n being an integer. Due to this periodicity we con-
sider the case n = 0; the obtained conclusions also hold for n # 0.
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Condition for the existence of bound states may be written from (8) as

qa
exp(—2qa)—(1—-g°a®)

tang, = * /2 (14)
where we can restrict ourselves to the range — = < g, =< = because of the periodicity of
the boundary condition on g,. There exist real, positive g values corresponding to
bound states if g¥ <|g,| < 7 whereas the potential possesses only scattering states if
0<|g,|<g¥. This result agrees with the limiting behaviour of the phaseshift at low
particle momenta

0 —gt<g <
lim 8, (p)=q7/2 g.=—gf
’ T —r<g,<-g¥
and
1] —r<g,<g¥
limé_(p)=y7/2 g=87
’ ” gi<g,<m. (15)

Apart from the jump of the phaseshift at p=0 as g, approaches Fg¥, one can
abserve in figure 6 that 5.( p) increases anly smoothly. From the results just presented
some conclusions can be drawn. First, the presence of resonant states (if any) is of
minor importance for vector-type point interaction potentials as compared with scalar-
type ones. Second, the amplitude and the phase plots exhibit great resemblance for
bath signs of the particle energy. Finally, only potentials satisfying |g,| > g can suppart
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Figure 6. Scattering phaseshift plotted as a function of pa for pasitive energy partictes
subjected to a vector coupling for g, =0.464 . .. {chain curve), —0.464 . .. (broken curve),

—1.5 (full curve) and 1.5 (dotted curve). Phaseshift corresponding to negative energy
particles can be obtained replucing g, by ~g, in this figure.
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Figure 7. Binding properties of the system as a function of the vector potential strength
for both signs of the particle energy. Open and full circles denote the occurrence of a
virtual state and of a zero-momentum rcsonance, respectively.

bound states (see figure 7) while half-bound states occur if |g,| = g¥. The ‘forbidden’
region of potential strength ranging from —g¥ to +g¥ disappears as the distance
between the point interaction potential and the wall becomes very large. Then, the
bound state spectra of an isolated vector point interaction potential is obtained
{Dominguez-Adame and Macid 1989a).

4. Summary

The critical values of the potential strength separating binding and non-binding poten-
tials have been found to be —0.549 ... lor scalar couplings and F0.464 ...+ nw for
vector ones in our relativistic treatment. These values are slightly different from that
obtained in the non-relativistic framework which is calculated to be —0.5. The main
difference between vector and scalar couplings in relation to the scattering properties
concerns the phaseshift behaviour at resonances. While §,{pa)+pa shows a clear
step-like evolution as pa increases for the scalar point interaction potentials, a smooth
behaviour is found for vector ones. Also, in the former potential resonance peaks were
narrower and higher, thus revealing the occurrence of well-defined resonance states
only for scalar couplings.
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