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We study theoretically the diffusion of one-dimensional Frenkel excitons in J-aggregates at temperatures that
are smaller or on the order of the J-bandwidth. We consider an aggregate as an open linear chain with
uncorrelated on-site (diagonal) disorder that localizes the exciton at chain segments of size smaller than the
full chain length. The exciton diffusion over the localization segments is considered as incoherent hopping.
The diffusion is probed by the exciton fluorescence quenching, which is due to the presence of point traps in
the aggregate. The rate equation for populations of the localized exciton states is used to describe the exciton
diffusion and trapping. We show that there exist two regimes of the exciton diffusion at low temperatures.
The first, slower one, involves only the states of the very tail of the density of states, while the second, much
faster one, also involves the higher states that are close to the bottom of the bare exciton band. The activation
energy for the first regime of diffusion is on the order of1/4 of the J-bandwidth, while for the second one, it
is on the order of the full J-bandwidth. We discuss also the experimental data on the fast low-temperature
exciton-exciton annihilation reported recently by I. G. Scheblykin et al.J. Phys. Chem. B2000, 104, 10949.

1. Introduction

Since the seminal works by Jelley1 and Scheibe,2 the concept
of Frenkel excitons3-5 has been used for explaining the
remarkable optical properties of molecular J-aggregates: (i) the
appearance of a narrow and intense line in the red wing of the
absorption spectra (so-called J-band), the full width of which
is on the order of several tens of wavenumbers at cryogenic
temperatures and (ii) the increase of the oscillator strength of
the optical transition by almost 2 orders of magnitude.6-10

During the 1990s, a considerable progress in understanding of
linear and nonlinear optical dynamics of J-aggregates was made
(for details, see the reviews in refs 11-13 and references
therein). Although monomers that form the aggregates have
complex chemical structure, both linear and nonlinear optical
dynamics in J-aggregates have been successfully described on
the basis of the simplest one-dimensional (1D) tight-binding
model with diagonal or off-diagonal disorder or both, both
uncorrelated10,14,15and correlated.14,16-18

The eigenstates of a homogeneous (nondisordered) J-ag-
gregate extend over the whole (N monomers) aggregate.
Disorder localizes the lowest in energy exciton states at segments
of aboutN* molecules;N* depends on the disorder magnitude
and is typically much smaller than the total number of molecules
in the chain:N* , N. One of the most important consequences
of this localization is the appearance of states below the bottom
of the bare exciton band. These states form the tail of the density
of states (DOS) and carry almost the whole oscillator strength
of the aggregate. For this reason, the one-exciton absorption in
J-aggregates is spectrally located at the tail of the DOS (see,
for instance, refs 9 and 10) and the width of the absorption band
is on the order of the width of the DOS tail.

The exciton diffusion in a disordered aggregate is essentially
the transition from one localized eigenstate to another. The
transition probability depends particularly on the temperature,
the energy spacing between the involved states, and the overlap
of these states. The lower states, being localized atdifferent
N* molecule segments of the aggregate, overlap very weakly.19

Contrary to that, the higher exciton states, which are localized
at segments larger thanN* molecules, overlap strongly with
several lower tail states. Although higher states are thermally
less favorable, the hops from the lower to higher states can be
faster than those between the lower states because of the higher
overlap. In this paper, we show that this competition between
the overlaps and thermal favorability results in a complex
scenario of the exciton transport at low temperatures. At zero
temperature, an exciton resides in one of the lower states at the
tail of the DOS. As temperature rises, first, the exciton starts to
diffuse over the weakly overlapped states of the DOS tail. The
activation energy for this regime is on the order of1/4 of the
DOS tail width. The diffusion in this regime is very slow. As
the temperature increases further, the higher states come into
play. As these states overlap much better with the lower states
and each other and also are more extended, the diffusion rate
increases by several orders of magnitude. The activation energy
for this faster regime of the exciton diffusion is on the order of
the DOS tail width or, in other words, on the order of the
J-bandwidth.

To the best of our knowledge, these aspects of the 1D
diffusion problem have not been discussed in the literature yet.
The same tight-binding Hamiltonian was used to describe
transport properties of electrons in doped semiconductors20 as
well as those of optical excitations in activated glasses.21,22 It
is to be stressed that, despite the seeming similarity of these
problems, the outlined scenario of the low-temperature 1D
diffusion over the localization segments is more complex than
the diffusion over one-level point impurity centers in semicon-
ductors or glasses. The major complication comes from the fact
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that the exciton can hop sideways to a different segment not
only directly (a “horizontal” hop) but also indirectly via higher
states, so “vertical” hops up in energy become extremely
important. In fact, it is the indirect hops that provide the
dominant contribution to the diffusion rate at temperatures on
the order of the J-bandwidth.

We use the quenching of the exciton fluorescence by point
traps to probe the exciton diffusion. The temperature range lower
or on the order of magnitude of the J-bandwidth is of our
primary interest; higher temperatures are beyond the scope of
the present work.

The outline of the paper is as follows. In section 2, we present
the microscopic model of exciton trapping. Section 3 is focused
on the qualitative discussion of the channels of the exciton
diffusion over the localization segments. The results of our
numerical simulations of the exciton fluorescence quenching,
obtained on the basis of the rate equation approach, are the
contents of section 4. In section 5, we conclude the paper and
discuss the results of the recent experiments on the fast exciton-
exciton annihilation in the aggregates of the triethylthiacar-
bocyanine salt of 3,3′-bis(sulfopropyl)-5,5′-dichloro-9-ethylth-
iacarbocyanine (THIATS).23

2. Microscopic Model of the Exciton Fluorescence
Quenching

We model a J-aggregate byN (N . 1) optically active two-
level molecules forming a regular in space 1D open chain. The
corresponding Frenkel exciton Hamiltonian reads4 (for the sake
of simplicity only the nearest-neighbor interaction is considered)

Here,En is the excitation energy of thenth molecule;|n〉 denotes
the state vector of thenth excited molecule. The energiesEn

are assumed to be Gaussian uncorrelated (for different sites)
stochastic variables distributed around the mean valueω0 (which
is set to zero without loss of generality) with the standard
deviation ∆. The hopping integral,-J, is considered to be
nonrandom and negative (J > 0), which corresponds to the case
of J-aggregates (e.g., see ref 6). In this case, the states coupled
to the light are those close to the bottom of the exciton band.
In what follows, moderate disorder (∆ < J) is considered. This
implies that the exciton eigenstates,æν(ν ) 1, 2, ...,N), found
from the Schro¨dinger equation

are extended over relatively large segments of the chain.
However, the typical size of these localization segments,N*,
is small compared to the full chain lengthN (units of the lattice
constant are used throughout the paper).

Having been excited into an eigenstateν, an exciton cannot
hop to other eigenstates if coupling to vibrations is not taken
into account. We assume that this coupling is weak and do not
consider polaron effects. This limit is applicable to a number
of J-aggregates because the Stokes shift of the luminescence
spectra with respect to the absorption spectra is usually small.7,9

The exciton-vibration interaction causes theincoherenthopping
of excitons from one eigenstate to another. Only one-phonon
processes are considered throughout the paper. The hopping that
results from the overlap of homogeneously broadened exciton
levels is a two-phonon process, and therefore, it is beyond the

scope of the present paper. We take the hopping rate from the
stateν to the stateµ in the following form (e.g., see ref 24)

Here, the constantW0 characterizes the amplitude of hopping
andn(ε) ) [exp(ε/T) - 1]-1 is the occupation number of the
vibration mode with the energyε (the Boltzmann constant is
set to unity). Because of the presence of then(ε) and 1+ n(ε)
factors, the rateWµν meets the principle of detailed balance:
Wµν ) Wνµ exp[(εν - εµ)/T]. Thus, in the absence of decay
channels, the eventual exciton distribution is the Boltzmann
equilibrium distribution. The sum over sites in eq 3 represents
the overlap integral of exciton probabilities for the statesµ and
ν. The spectral factorS(|εν - εµ|) depends on the details of the
exciton-phonon coupling, as well as on the DOS of the medium
into which the aggregate is embedded. For example, within the
Debye model for the density of phonon states, this factor takes
the formS(Eν - Eµ) ) (|Eν - Eµ|/J)3.25 However, this model
is applicable to glassy media (the media we assume as the host)
only in a narrow frequency interval on the order of several
wavenumbers (see, for instance, refs 26 and 27). Therefore, as
in refs 28 and 29, we restrict ourselves to a linear approximation
to this factor,S(Eν - Eµ) ) |Eν - Eµ|/J. This accounts for
reduction of the exciton-vibration interaction in the long-wave
acoustic limit.4,5 Also, it eliminates the divergence ofWνµ at
small values of|Eν - Eµ|.

The diffusion of Frenkel excitons can be probed by quenching
of the exciton fluorescence by traps. Consider an aggregate with
point traps, namely monomers at which an exciton decays
nonradiatively and very fast compared to the typical spontaneous
emission rate of the aggregate. Then, those excitons that reach
the traps decay nonradiatively and contribute to the fluorescence
quenching. If an exciton is created far from the trap, it has to
diffuse to the trap to be quenched; the faster it diffuses the more
effective is the fluorescence quenching. Thus, the quenching
rate depends on the diffusion rate and can be used as a probe
of the latter.

We define the quenching rate of the exciton stateν as

whereΓ is the amplitude of exciton quenching and the sum
runs over positions of theNq traps. Thus, we take the quenching
rate to be proportional to the probability to find the exciton at
trap sites. We assume that point traps do not change either the
disorder configuration or the exciton eigenfunctions,æνi.

We describe the process of the exciton trapping by means of
the rate equation:

wherePν is the population of theνth exciton eigenstate and the
dot denotes the time derivative,γν ) γfν is the spontaneous
emission rate of theνth exciton state, andγ is that of a
monomer,fν ) (∑n)1

N æνn)2 being the oscillator strength of the
state ν. The initial total population is normalized to unity:
∑νPν(0) ) 1.

Wµν ) W0S(|εν - εµ|)∑
n)1

N

æνn
2ænµ

2

× {n(εµ - εν) εµ > εν

1 + n(εν - εµ) εµ < εν
(3)

Γν ) Γ∑
i)1

Nq

|æνi|2 (4)

Ṗν ) -(γν + Γν)Pν + ∑
µ)1

N

(WνµPµ - WµνPν) (5)

H ) ∑
n)1

N

En|n〉 〈n|- J∑
n)1

N-1

(|n + 1〉 〈n| + |n〉 〈n + 1|) (1)

∑
m)1

N

Hnmæνm ) ενæνn, Hnm ) 〈n|H|m〉 (2)
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The temperature dependence of the exciton quenching is
calculated as follows. We admit the definition of the exciton
fluorescence decay time as the integrated total population:

where angle brackets denote the average over disorder realiza-
tions and traps positions. The lifetime defined as eq 6 is the
expectation value of the photon emission time and, therefore,
is appropriate for nonexponential fluorescence kinetics, the case
with which we are dealing (see ref 25 for detailed discussion).

The decay time has to be calculated for aggregates with traps
(denote it asτ) and without traps (denote it asτ0). The quenching
rate is then defined as

This quantity carries information about the diffusion rate and
is the object of our analysis.

The definition of the decay rate as the integrated total
population allows for considerable simplification of the calcula-
tion procedure. Write the solution of eq 5 in the formal matrix
form

where

After substitution of eq 8 into eq 6 and integration over time,
τ can be expressed in terms of theR̂-matrix:

Calculation of the quenching rateWq requires computation of
the inverse matrixR̂-1 for each realization of disorder rather
than the fluorescence kinetics. The inverse matrix is to be found
twice, for an aggregate with and without traps. Note that the
decay timeτ0 also depends on temperature (see, for example,
refs 25, 29, and 30).

3. Qualitative Arguments

At low temperatures, excitons reside in the tail of the DOS,
that is, below the bottom of the bare exciton band,E ) -2J.
As we show subsequently, higher states that are close to the
bottom of the bare band contribute to the exciton diffusion as
well. Therefore, these two parts of the exciton energy spectrum
are of primary importance for the low-temperature exciton
transport.

A. Analyzing the Low-Energy Structure. Here, we recall
briefly the concept of the local (hidden) energy structure of
localized 1D excitons,17,31,32which was proved to exist in the
vicinity of the band bottom.19,34According to this concept, the
low-energy one-exciton eigenfunctions obtained for a fixed
realization of disorder are localized at segments of typical size
N* (localization length). Some of these localized states (about
30%) can be grouped into local manifolds of two (or sometimes

more) states that are localized at the sameN* molecule segment
(see the states filled with black color and joined by ellipses in
Figure 1). It turns out that the structure of the exciton states in
each local manifold is very similar to the structure of the lower
states of a homogeneous (nondisordered) linear chain of length
N*. In particular, the lowest state in a manifold has a wave
function without nodes within its localization segment. Such a
state can be interpreted as thelocal ground state of the segment
(italic is used to distinguish this state from the true ground state,
that is, the state with the lowest energy in each realization). A
local ground state carries large oscillator strength, approximately
N* times larger than that of a monomer, so the typical
spontaneous emission rate isγ* ) γN*. The scaling law of the
localization length is34

The energy distribution of thelocal ground states, calculated
as described in ref 34, and the total DOS are presented in Figure
2. This figure shows that almost alllocal ground states belong
to the tail of the DOS, as has been mentioned in the Introduction.

The second state in a manifold has a node within the
localization segment (see Figure 1) and looks like the firstlocal
excited state of the segment. Its oscillator strength is typically
an order of magnitude smaller than that of thelocal ground
state. It is important to recall here that, contrary to the eigenstates
from the same manifold, the lower states localized at different
segments overlap weakly (see all states filled with black color
in Figure 1). The energies of thelocal ground states are
distributed within the intervalx2σ11 (σ11 being the typical
spacing betweenlocal ground states). This interval is larger than
the typical energy spacingε12 between the levels in a local
manifold:34

For this reason, the local energy structure cannot be seen either
in the DOS (see Figure 2) or in the linear absorption spectra

τ ) ∫0

∞
dt 〈∑

ν)1

N

Pν(t)〉 (6)

Wq ) 1
τ

- 1
τ0

(7)

Pν(t) ) ∑
µ)1

N

(e-R̂t)νµPµ(0) (8)

Rνµ ) (γν + Γν + ∑
ν′)1

N

Wν′ν)δµν - Wνµ (9)

τ ) 〈 ∑
ν,µ)1

N

R̂νµ
-1Pµ(0)〉 (10)

Figure 1. The energy structure of the exciton states in the vicinity of
the bottom of the exciton band. The states are obtained by diagonal-
ization of the Hamiltonian (eq 1) for a linear chain of 300 molecules
and the disorder magnitude∆ ) 0.1J. The baseline of each state
represents its energy in units of the spacing in the local energy structure,
ε12. The origin of the exciton energy is set to the lowest energy for the
realization. The wave functions are in arbitrary units. The typical
localization lengthN* is given by the bar in the lower right corner.

N* ) 8.7(∆J)-0.67
(11)

σ11 ) 0.7J(∆J)1.33
(12a)

ε12 ) 0.4J(∆J)1.36
(12b)
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(see, for instance, ref 10). However, this structure determines
the nonlinear optical response of the aggregate.35-37

Higher states are more extended than thelocal states because
the localization length increases with energy (see the states filled
with gray color in Figure 1). Therefore, the higher states cannot
be included into any particular local manifold: their wave
functions cover more than oneN* molecule segment. Neverthe-
less, because all of these states are close to the maximum of
the DOS (see Figure 2), the typical energy spacing between
the higher states and the coveredlocal states is of the order of
ε12. Thus, the energyε12 is expected to be the characteristic
energy of the exciton diffusion.

It is clear from the above arguments that at temperaturesT
, ε12, it is the states from the local manifolds that determine
the exciton diffusion. Two types of hopping over these states
can be distinguished: intrasegment hopping and intersegment
one, involving the states of the same local manifold and those
of different manifolds, respectively. Because the states from
different local manifolds overlap weakly, only intersegment hops
to adjacent segments are of importance. The disorder scaling
of the overlap integrals,Iµν ) ∑næµn

2æνn
2 for the local states of

the same and adjacent segments was obtained in ref 19:

Hereafter, the indices 1 and 2 label thelocal states of the same
segment, while those with primes label thelocal states of an
adjacent segment. As follows from eq 13, the intrasegment
overlap integral is typically 2 orders of magnitude larger than
the intersegment one. Note that both overlap integrals scale
approximately proportional to the invertedN* [see eqs 11 and
13]. This proportionality holds for two exponential functions
extended over the lengthN* and separated by the distance of
the same order of magnitude.

The intrasegment hops do not result in the spatial displace-
ment of excitons. Only the intersegment hopping gives rise to
the spatial motion. Nevertheless, we show below that both types
of hops are important for understanding the features of the low-
temperature exciton transport.

The overlap integrals between thelocal states of a segment
and the higher states that are extended over this segment and a
few adjacent ones (see the states filled with gray color in Figure
1) are on the order ofI12. This fact implies that even atT < ε12

the indirect hops via these higher states can be more efficient
than the direct intersegment hops over the states of local
manifolds (see below). Our calculations support this assumption.

B. Hopping at Zero Temperature. At zero temperature, an
exciton can hop only down to lower states. Let us assume that
it is in the local excited state 2. Then it can either hop to the
local ground state 1 of the same segment or to a lower stateν′
localized at an adjacent segment (see Figure 3,T ) 0). Because
the intrasegment hopping is faster than the intersegment one,
first, the exciton hops down to thelocal ground state 1 with

Figure 2. The total DOS (s) and the DOS of thelocal ground states
P(E1) (- - -) for different magnitudes of disorder∆. The DOS is
normalized toN; P(E1) is normalized toN/N*. The vertical lines indicate
positions of the curve maxima. For all considered magnitudes of
disorder, the maximum of the local DOS is shifted with respect to the
maximum of the total DOS by about the mean spacing in the local
energy structure,ε12.

Figure 3. Schematic view of exciton hopping at zero and nonzero
temperatures. The indices 1 and 2 label thelocal ground and the first
local excited states of the same segment, respectively. Theν′ state is
localized at an adjacent segment. The index 3 labels a higher state,
which extends over two adjacent segments. Hops are shown by straight
arrows; the arrow thickness represents magnitude of the coresponding
hopping rate. Thin wavy arrows show spontaneous emission.

I12 ) 0.14(∆J)0.70
(13a)

Iν′1 ≈ Iν′2 ) 0.0025(∆J)0.75
(13b)
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the typical energy lossε12 (ε12 being the mean energy spacing
in the local energy structure). From thelocal ground state 1,
the exciton can hop only to a stateν′ of an adjacent segment,
provided thatεν′ < ε1 and the spontaneous emission rate of the
local ground stateγ1 is small compared to the intrasegment
hopping rate,Wν′1|T)0. Hereafter, such a relationship between
these rates is referred to as the limit of fast diffusion; only this
limit is considered in this work. The typical energy loss during
such sideways hop is on the order of the average spacing
betweenlocal ground states,σ11 (σ11 is on the order of the
J-bandwidth). Thus, already after one such sideways hop, the
exciton resides in a state in the tail of the DOS (see Figure 2).
Therefore, the number of states with even lower energies
decreases dramatically, which results in a strong increase of
the typical distance to those states and decrease of the probability
to hop further sideways. Then the exciton either relaxes to a
lower state of the same segment (if there is one) or decays
spontaneously, that is, this type of the spatioenergetic diffusion
(toward lower energies) stops very quickly. Note that this
diffusion would manifest itself in the red shift of the exciton
emission spectrum relative to the absorption spectrum. The
experimental data shows that such red shift is either absent6,7

or is smaller than the J-bandwidth.23,38These experimental facts
indicate unambiguously that at low temperatures,T , σ11,
excitons make few hops before they decay because of the
spontaneous emission, as was argued in refs 39-41. Conse-
quently, the zero-temperature exciton quenching is expected to
be weak provided the concentration of quenchers is low, the
case that we are interested in.

C. Hopping at Nonzero Temperatures.At nonzero but low
temperatures (0< T j ε12), an exciton can also hop up in
energy. Consider an exciton in one of the lower states in the
tail of the DOS, for example, in thelocal ground state 1 (see
Figure 3,T > 0). For the reasons discussed above, first, the
exciton hops up to the firstlocal excited state 2 of the same
segment, provided that the hopping rate for the considered
temperature is larger than the spontaneous emission rateγ1 of
the initial state 1. During this process, the exciton typically gains
the energyε12. Becauseε12 is on the order ofσ11,34 already
after the first hop up the exciton leaves the tail of the DOS (see
Figure 2), and hence, it is likely to have a lower stateν′ localized
at an adjacent segment. A hop down to this state with loss in
energy is favorable and results in the spatial displacement of
the exciton, that is, in the exciton diffusion. We stress that
although only sideways hops result in the spatial displacement
of the exciton, it is the initial hop up from thelocal ground
state 1 to thelocal excited state 2 that triggers the diffusion.

Another way for the exciton to hop sideways to the stateν′
is via the higher state 3 that overlaps well with both states 2
andν′ (see Figure 3,T > 0). As it has been mentioned, such
hops compete with the sideways hops over thelocal states;
although the hop up to the state 3 is thermally unfavorable, the
overlap integral for this hop,I31, is large compared to that for
an intersegment hop,Iν′1. We show later that this channel of
the diffusion becomes dominant even at relatively low temper-
ature.

4. Temperature Dependence of the Quenching Rate

In this section, we discuss the results of numerical calculation
of the quenching rateWq. We consider the initial condition in
which the leftmostlocal ground state is excited while a single
trap is located in the center of the localization segment of the
rightmostlocal ground state. In this case, the exciton quenching
is most affected by the diffusion because the created exciton

has to travel over almost the whole chain to be quenched. Thus,
the exciton quenching at low concentration of traps can be
studied. The quenching rate was calculated as described in
section 2 for the parameter set corresponding to the limit of
fast diffusion and fast quenching (the latter limit is defined
subsequently).

A. Numerical results.As it was already mentioned in section
3, in the limit of fast diffusion the intersegment down-hopping
rate is large compared to the typical spontaneous emission rate
of a local ground state:

If a quencher is located within the localization segment of a
local state, then the typical quenching rate for this state isΓ*
) Γ/N* [see eq 4]. Because we are interested in the limit of
fast quenching, this rate should be taken to be larger than the
typical intrasegment down-hopping rate:

This ensures that once an exciton hops to alocal state of the
segment with the trap, it is quenched almost instantly.

The inequalities of eqs 14 and 15 yield the relationship
between the rate equation parameters in the limit of fast diffusion
and quenching:

On the basis of the scaling laws, eqs 12 and 13, the parameter
set was chosen so that inequalities in eq 16 hold. More
specifically, for each magnitude of the disorder,W1′1|T)0 ) 10γ*
andΓ* ) 10W12|T)0 whereγ ) 5 × 10-8 andΓ ) 0.2 for ∆
) 0.1J, γ ) 4 × 10-7 andΓ ) 0.5 for ∆ ) 0.2J, andγ ) 1 ×
10-6 andΓ ) 0.9 for ∆ ) 0.3J. In all calculations, we setW0

) 1. Calculations were performed forN ) 1000 and averaged
over 100 realizations of the disorder (increasing the number of
realizations of disorder leads to negligible changes of the
results).

Figure 4 shows the temperature dependence of the quenching
rateWq for different magnitudes of the disorder∆. In each plot,
the quenching rate is given in units of the typical exciton
radiative rateγ* ) γN*. The temperature is given in units of
the mean energy spacing in the local energy structureε12. Note
that bothN* and ε12 depend on∆ as described by eqs 11 and
12b. Figure 4 demonstrates very clearly that for all considered
values of∆ at temperatures lower thanε12 the quenching rate
is vanishing. This indicates that the diffusion at these temper-
atures is not fast enough for the exciton to reach the quencher
during its (spontaneous) lifetime: it emits a photon before it is
trapped. In contrast, just after the temperature exceeds ap-
proximatelyε12, the quenching becomes noticeable: the exciton
partly diffuses to the trap where it decays mostly because of
quenching. Specifically, temperatures on the order of 2ε12 are
required for the quenching to become as effective as the
spontaneous emission:Wq ≈ γ* ) γN*.

B. Discussion.To understand which states contribute most
to the quenching process, it is useful to estimate the effective
sideways hopping rateW that is required to reach the quenching

Wν′1|T)0 ≈ W0

σ11

J
Iν′1 . γN* (14)

Γ/N* . W12|T)0 ≈ W0

ε12

J
I12 (15)

W0

σ11

J

I1′2

N*
. γ (16a)

W0

ε12

J
I12N* , Γ (16b)
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levelWq ≈ γ*. To do this, consider the sequence of localization
segments as an effective chain of “sites”, the typical number of
which is equal to the number of segments,Ns ) N/N*; the mean
spacing between these “sites” isN*. The exciton diffusion
coefficient is then estimated asD ≈ WN*2 (the lattice constant
is set to unity). The quenching is as effective as the spontaneous
decay if the exciton reaches the trap (located on the opposite
side of the chain) during its lifetimeγ*-1, that is, it has to diffuse
over the distanceN during this time. Equating the diffusion
length xD/γ* to N, we obtain the estimate for the required
diffusion rateW:

The localization lengthN* is equal to 38, 25, and 18 for∆ )
0.1, 0.2 and 0.3, respectively. Thus, the corresponding diffusion
ratesW are estimated as 625γ*, 1600γ*, and 2500γ* (for N )
1000). These values are about 2 orders of magnitude larger than

the rates of sideways hops over thelocal states, taken to be
10γ* in all calculations. This indicates that when the quenching
rate becomes comparable to the spontaneous emission rate, the
exciton does not hop directly between thelocal states of adjacent
segments (with the typical rateWν′1 ≈ 10γ*). It rather hops via
the higher states that extend over more than oneN* molecule
segments (see the discussion in section 3). The hopping rate
via such states forT ≈ 2ε12 is on the order ofW12, which is
about 2 orders of magnitude larger thanWν′1 [see eq 3 and the
scaling laws (eq 13)].

To prove the above finding, we performed calculations of
the quenching rateWq varying the number of states considered
in eq 10. More specifically, we considered all states up to some
(variable) cutoff state. Figure 5 shows the results of such study
performed for∆ ) 0.1J. As it can be seen from the figure,Wq

depends drastically on the number of states participating in the
quenching process. In the region whereWq > γ*, approximately
6N/N* states are required to reach the true value of the
quenching rate that is calculated for all states (compare dashed
and solid lines). Thus, at temperaturesT J ε12, the higher states
provide the dominant contribution to the exciton quenching
process.

Figure 6 shows the regions of the DOS that correspond to
different numbers of states that were used for calculation of
the data presented in Figure 5. The higher states lie just after
the local ones, close to the maximum of the DOS (see Figure
6). Therefore, the typical energy spacing between thelocal and
higher states is aboutε12. Because the higher states extend over
several, but not very many,N* molecule segments (see Figure
1), the overlap integral between these states and the covered
local states is large. These two factors ensure high hopping rate
from the lower local to the higher states. Another important
point is that higher states are well-overlapped and more
extended, so hops between them are typically faster and longer
than those between thelocal ones. Also, the higher states have
small oscillator strength, so as long as an exciton remains in
these states, it does not decay radiatively. The above qualitative
arguments explain the dominant contribution of the higher states
into the exciton diffusion and quenching within the temperature
rangeT J ε12.

It is also seen from Figure 5 that the difference between the
true value of the quenching rateWq and that calculated for a

Figure 4. Temperature dependence of the quenching rateWq calculated
for a linear chain of the lengthN ) 1000 and different magnitudes of
the disorder ∆. The averaging is performed over 100 disorder
realizations. For each realization of the disorder, the leftmostlocal
ground state is excited, while the only trap is located in the center of
the localization segment of the rightmostlocal ground state.

W≈ γ*(N/N*) 2 (17)

Figure 5. Temperature dependence of the quenching rateWq calculated
for ∆ ) 0.1J (N* ≈ 40) and different numbers of states considered in
eq 9: (s) all N ) 1000 states; (- - -) 6N/N* ) 150 states; (- ‚ -)
4N/N* ) 100 states; (‚‚‚) 3N/N* ) 75 states; (- - ‚) 2N/N* ) 50
states. The averaging is performed over 100 disorder realizations. For
each realization of the disorder, the leftmostlocal ground state is
excited, while the only trap is located in the center of the localization
segment of the rightmostlocal ground state.
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restricted number of states decreases at lower temperatures.
Figure 7 demonstrates the temperature dependence ofWq

obtained for∆ ) 0.2J (N* ≈ 25) and temperaturesT < ε12.
The solid line presents the dependence calculated for allN )
250 states considered in the rate equation and the dashed line
that for 2N/N* ) 20 states. These 2N/N* states include all of
the states of the local manifolds 1.3N/N* and 0.7N/N* higher
ones.

The parameters of the rate equation were set as follows:Γ*
) 10W12|T)0 andW1′1|T)0 ) 100γ*. The chain lengthN ) 250
is chosen so that the effective hopping rateW ≈ γ*(N/N*)2

estimated as discussed above (see eq 17) is equal to the rate of
the direct hopping to an adjacent segment,W1′1|T)0. This yields
the equation (N/N*)2 ) 100 for the chain length. This condition
ensures that the diffusion over the lower states only can provide
the quenching rateWq ≈ γ* at T ≈ ε12. Indeed,Wq ≈ 0.5γ* at
this temperature for 2N/N* states. The most important point
demonstrated by Figure 7 is that below the temperatureT1 ≈
0.25ε12 the two curves deviate slightly, which means that the
contribution of the higher states into the diffusion becomes
negligible: the exciton hops mostly over the DOS tail states.
In contrast, above the temperatureT1, the higher states provide
the dominant contribution to the diffusion and quenching. Note
also that the value of the quenching rate at the critical

temperatureT1 is typically very small, so the experimental
observation of this “regime change” is a challenging task.

The critical temperatureT1 at which the higher states come
into play can be estimated by equating the typical rate of the
direct sideways hopping from alocal state 2 to an adjacentlocal
state 1′ to the “vertical” hopping rate from thelocal state 2 to
a higher state 3 (see Figure 3,T > 0): W1′2 ) W32 ≈ W12|T)0

exp(ε12/T1). This equation yields the temperatureT1:

We stress that the numerical factor 1/ln(I12/I1′2) ≈ 0.25 is almost
independent of the disorder because the disorder scalings of
the overlap integrals are almost the same (see eq 13). So, the
estimateT1 ≈ 0.25ε12 is universal for a wide range of the
disorder degree.

5. Summary and Concluding Remarks

In this paper, we study theoretically the peculiarities of the
low-temperature diffusion of the 1D Frenkel excitons localized
by a moderate diagonal disorder. The exciton motion over
localized states is considered asincoherent hopping. The
diffusion is probed by the exciton quenching at a point trap.
We consider a single trap located at one end of the aggregate,
while the exciton is created initially at the other end. In this
case, the exciton has to travel over almost the whole chain to
be quenched. Under these conditions, the quenching rate carries
direct information about the diffusion length that the exciton
travels during its lifetime. The exciton quenching is described
by the rate equation with the quenching rate being proportional
to the probability of finding the exciton at the trap site.

Both our qualitative arguments and numerical simulations
show that there exist two regimes of the exciton diffusion. At
lower temperatures, those smaller thanT1 ≈ 0.25(J-bandwidth),
the exciton diffuses mostly overweakly oVerlappedDOS tail
states, which determine the optical response and form the J-band.
This regime of diffusion is very slow; the exciton cannot diffuse
over large distance during its lifetime at these temperatures.

At higher temperatures, the higher states come into play. The
diffusion begins to build up because of the two-step hops via
higher states. This accelerates the exciton diffusion drastically,
so an exciton can diffuse over large distances during its lifetime.
The higher states begin to contribute dominantly to the diffusion
at temperatures higher than aboutT1. However, the diffusion
becomes really fast (in the sense that the quenching rate becomes
comparable to the spontaneous emission rate of the aggregate)
only at the temperatures on the order of the J-bandwidth.

In ref 23, the anomalously fast low-temperature diffusion of
Frenkel excitons in J-aggregates of THIATS was reported. The
unit cell in these aggregates contains two THIATS molecules.
Because of this fact, the absorption spectra of THIATS
aggregates reveal two bands, so-called H-band and J-band.42

The former, intensive and widely broadened (the width being
about 1000 cm-1), results from the optical transition from the
ground state of the aggregate to the top of the exciton band.
The latter, much less intensive and narrower (the width being
82 cm-1), is due to the optical transition from the ground state
to the bottom of the exciton band. Contrary to the H-band, the
J-band is visible in exciton fluorescence spectra.

The authors of ref 23 studied experimentally the exciton-
exciton annihilation and found that this effect is pronounced
even atT ) 5 K (3.5 cm-1), while the width of J-band of
THIATS J-aggregates is 82 cm-1. To explain the experimental

Figure 6. The total DOS calculated forN ) 1000 and∆ ) 0.1J (N*
≈ 40). The DOS is normalized toN. The vertical lines show the
maximum energies corresponding to different numbers of states
considered in the rate equation that was used to calculate the
dependencies plotted in Figure 5 (in the sense that all states lower than
the specified energy are considered). Note that the tail of the DOS is
formed by 1.3N/N* states, namely, by the states of the local manifolds
(N/N* local ground states plus 0.3N/N* of the local excited states; recall
that about 30% of thelocal ground states form the doublets).

Figure 7. Temperature dependence of the quenching rateWq calculated
for ∆ ) 0.2J (N* ≈ 25): (s) all N ) 250 states; (- - -) 2N/N* )
20 states.

T1 ) 1
ln(I12/I1′2)

ε12 ≈ 0.25ε12 (18)
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data, the authors assumed that an exciton travels over about
104 dye molecules during its lifetime to meet another exciton
and annihilate. They found also that the activation energy of
the exciton diffusion was 15 K (10.5 cm-1) and interpreted this
energy as the typical energy spacing between the states of
adjacent localization segments.

The fact that the exciton-exciton annihilation is very sensitive
to temperature indicates that this process starts after the exciton
intraband relaxation to the states forming the J-band. Therefore,
the annihilation process involves only the J-band states, and
the difference in band structure between THIATS aggregates
and J-aggregates is probably unimportant. Furthermore, the
exciton-exciton annihilation can be treated similarly to the
exciton quenching: one of the two excitons can be considered
as an immobile trap for the other, while the other diffuses twice
as fast. Thus, our model is applicable to analyzing the exciton-
exciton annihilation in THIATS aggregates. As reported in ref
23, the fluorescence spectrum of THIATS J-aggregates is
narrowed by approximately 26 cm-1 and red-shifted by 23 cm-1

as compared to the absorption spectrum. These results indicate
unambiguously that excitons make sideways hops during their
lifetime, that is, the rate of sideways hops overlocal states is
larger than the exciton spontaneous emission rate. Thus, the
conditions for the exciton diffusion in THIATS J-aggregates
are similar to those studied in the present paper (the limit of
fast diffusion).

Through discussion of the above-mentioned experimental data
and its interpretation presented in ref 23, the following points
can be made. First, the typical energy spacing between the states
of the adjacent segments is on the order of the J-bandwidth,19

that is 82 and not 10.5 cm-1. The latter value is closer to 0.25
× 82 cm-1, that is, this temperature could be related to the
temperatureT1, the activation energy of the faster exciton
diffusion regime. Above this temperature, an exciton diffuses
mostly over the higher states and not over the DOS tail states,
as it was suggested in ref 23. Another point, and a more
important one, is of the quantitative nature: the typical size of
the localization segment in THIATS J-aggregates isN* ) 30.42

In the model that we are using, this corresponds to the disorder
magnitude∆ ≈ 0.2J. Our numerical data obtained for a chain
of N ) 1000 molecules demonstrates that for this value of the
disorder the exciton quenching is vanishingly small for the
temperaturesT ≈ (10.5/82)ε12 (we remind thatε12 is on the
order of the J-bandwidth). In other words, the exciton created
in the leftmostlocal ground state cannot diffuse over the whole
chain of 1000 monomers during its lifetime. However, it can
do so at the temperatures on the order ofT ≈ e12 ≈ 82 cm-1.
Thus, understanding the fast low-temperature diffusion in the
aggregates of THIATS dye molecules, observed in ref 23, still
remains an open question.
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