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Abstract

We consider electron transport through a quantum wire with an attached quantum-dot array, when the number of dots is large. To this end,

we use a noninteracting Anderson Hamiltonian. The conductance at zero temperature shows a complex behavior as a function of the Fermi

energy. In particular, two well-defined energy regions are observed. Far from the site-energy of the quantum dots, the conductance depends

smoothly on the Fermi energy. On the contrary, at the center of the band the conductance develops an oscillating pattern with resonances and

antiresonances due to constructive and destructive interference in the ballistic channel, respectively. We discuss analytically in detail the

physical origin of this complex behavior.
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1. Introduction

Latest advances in nanofabrication of quantum devices

make it possible to obtain quantum dots (QDs) in a

controllable way [1]. We have recently proposed a new

quantum device based on a quantum wire (QW) with an

attached QD array [2]. In this case the QD array acts as

scattering center for transmission through the QW. This

configuration can be regarded as a quantum wave guide with

side-stub structures, similar to those reported in Ref. [3].

The conductance at zero temperature through the QW shows

a complex behavior as a function of the Fermi energy, being

strongly dependent on the number of QDs in the attached

array. For a uniform QD array, we found that the

conductance develops an oscillating pattern with resonances

(perfect transmission) and antiresonances (perfect reflec-

tion). In addition, we found an odd–even symmetry related

to the number of QDs in the array, namely perfect

transmission takes place if this number is even

ðG ¼ 2e2=hÞ but perfect reflection arises for an odd number

ðG ¼ 0Þ: These results indicate the feasibility of tuning the

QW transport properties through the QD array. In this work

we report further progress along the lines indicated above.

In particular, we study in detail the complex behavior of

the conductance of the QW when the number of QDs in the

attached array is large.

2. Model Hamiltonian and conductance

We model the system by using a noninteracting

Anderson tunneling Hamiltonian that can be written as

H ¼ HQW þ HN
QD þ HQD–QW; where

HQW ¼ v
X

i

ðc†
i ciþ1 þ c†

iþ1ciÞ; ð1Þ

HN
QD ¼ 10

XN

l¼1

d†
l dl þ Vc

XN21

l¼1

ðd†
l dlþ1 þ d†

lþ1dlÞ;

HQD–QW ¼ V0ðd
†
1c0 þ c†

0d1Þ:

The operators c†
i and d†

l create an electron at sites i and l;

respectively. Here v and Vc are the hoppings in the QW and

in the array with N QDs, respectively. V0 is the hopping

between the QW and the amay. Finally, 10 is the energy

level of each QD. Notice that we are assuming uniform

hopping and identical QDs in the array, although this is not

an essential requirement of the model since more general

situations can be handled [2]. Fig. 1 shows a schematic view

of the system.

The experimentally accessible quantity is the linear

conductance G, which is related to the transmission
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coefficient at the Fermi energy by the one-channel Landauer

formula at zero temperature. It is a matter of algebra to

obtain [2]

G ¼
2e2

h

Q2
N

Q2
N þ G2

: ð2Þ

where QN is the continued fraction

QN ¼ 12 10 2
V2

c

12 102

. .
.

12 10 2
V2

c

12 10

; ð3Þ

where Gð1Þ ; V2
0 =2v sinðkdÞ can be regarded as the level

broadening, and the dispersion relation in the QW is 1 ¼ 2v

cosðkdÞ; d being the lattice spacing. Notice that the level

broadening can be fairly well approximated by G . V2
0 =2v

close to the center of the band. It is worth mentioning that

the spectrum (zeroes of QN) depends only on the hopping in

the QD array ðVcÞ while G is only function of V2
0 =v:

Consequently, both magnitudes can be controlled indepen-

dently in an actual experiment. This is one of the main

advantages of the present set-up.

3. Results

To evaluate the conductance at zero temperature when

the number N of attached QDs is large, we must rely on

numerical calculations. Fig. 2 shows the results for N ¼ 15

and 16 when Vc ¼ G and 10 ¼ 0: We observe the occurrence

of N antiresonances and N 2 1 resonances in the con-

ductance of the QW. The positions of the antiresonances

correspond exactly to the electronic spectrum of the isolated

QD array. This property could be used to measure the

energy spectrum of the N QD array. It should be stressed

that the particular set-up we suggested allows us to

control the energy and the width of the antiresonances in

an independent fashion. On further increasing N;

the antiresonances never merge into a single stop-band, as

one would naively expect; this statement can be rigorously

demonstrated [2].

Let us consider the case when the Fermi energy is pinned

at the value of the energy level of the QD. From Fig. 1 we

notice that Gð0Þ ¼ 0 for N ¼ 15 and Gð0Þ ¼ 2e2=h for

N ¼ 16: This suggests the occurrence of an odd–even

parity. In fact, it is straightforward to prove the existence of

this odd–even parity for arbitrary N [2]. This symmetry

arises from the fact that the energy level of the QDs 10 is

always in the electronic spectrum of the isolated QD array,

provided the number of the QDs is odd.

When the number of attached QDs is large, a rich

phenomenology appears for different values of the Fermi

energy. When the Fermi energy lies far from the center of the

QW band ðl12 10l . 2VcÞ; the conductance presents regular

and smooth behavior. However, the conductance strongly

fluctuates close to the center of the QW band for minute

variations of the Fermi energy ðl12 10l , 2VcÞ: In order to

shed light onto this complex behavior, the continued fraction

QN in Eq. (3) is written as QN ¼ ð12 10ÞxN ; where xN

satisfies the following recursive equation,

xNþ1 ¼ f ðxN21Þ ¼ 1 2
a

xN

; N ¼ 1; 2; 3;… ð4Þ

with x1 ¼ 1 and a ; V2
c =ð12 10Þ

2 for 1 – 10: Thus, we are

faced to a one-dimensional map (4) with control parametera:

This map has two fixed points at

xp^ ¼
1

2
ð1 ^

ffiffiffiffiffiffiffiffiffi
1 2 4a

p
Þ; ð5Þ

when a , 1=4; namely l12 10l . 2Vc; as shown in Fig. 3.

The fixed point xpþðx
p
2Þ is stable (unstable). The conductance

Fig. 1. Quantum dot array attached to a perfect quantum wire.

Fig. 2. Conductance, in units of 2e2=h; versus Fermi energy, in units of G; for

(a) N ¼ 15 and (b) N ¼ 16 QD array with Vc ¼ G and 10 ¼ 0:
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for N !1 is,

G1 ¼
2e2

h

ðl12 10lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 10Þ

2 2 4V2
c

p
Þ2

ðl12 10lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 10Þ

2 2 4V2
c

p
Þ2 þ G 2

; ð6Þ

for l12 10l . 2Vc:This result explains the smooth tails seen

in Fig. 2 when l12 10l=G . 2:

The nonlinear map (4) undergoes a bifurcation at a ¼

1=4ðl12 10l ¼ 2VcÞ; and there are not fixed points when

a . 1=4; namely l12 10l , 2Vc (Fig. 3). Consequently,

minute variations of the Fermi energy result in a dramatic

change in the conductance of the QW, as it can be concluded

from Fig. 2.

4. Summary

In summary we studied a noninteracting QD array side-

coupled to a quantum wire. We found that conductance at

zero temperature develops an oscillating band with

resonances and antiresonances due to constructive and

destructive interference in the ballistic channel, respect-

ively. We show that this band is related to the electronic

properties of the isolated QD array. The complex pattern of

the conductance as a function of the Fermi energy has been

explained from the occurrence or absence of fixed points of

a one-dimensional nonlinear map.
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Fig. 3. Mapping of the nonlinear map (4) showing the fixed points.
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