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Non-local separable potential approach to multicentre interactions
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[t is shown that nonlocal separable potentials may be used to study bound
states of parlicles in multicentre potentials. The binding cnergy is obtained in a
closed torm. The cases of H; ion and polymer chains are discussed in detail and
results compared to experimental data.

1. Introduction

The solution of the Schrodinger equation for multicentre potentials is of general
interest in atomic, molecular and solid state physics. Several methods have been
developed to study the motion of an electron in a given superposition of three-
dimensional potentials. In particular, the small-radius potential (SRP) approximation
has been widely used in different branches of quantum mechanics [1-3]). The SRP
approximation, however, is only valid for low-energy particles [4], and we might
include information not onlty about the potential strength but also about the potential
shape to obtain more accurate results. The natural way to generalize the SRP
approximation is the non-local (separable) potential (NLP) method, in which the
actual potential at cach site is replaced by a projective operator {5, 6]. This method
lcads to an exactly solvable Schrédinger equation and the energy of the particle is also
obtained in a closed form even for finite-range potentials. What is more important,
it is always possible to find a nonlocal separable potential (or a sum of them) which
reproduces any set of given particle states [3, 7]. There is, therefore, no theoretical
limit to the numerical precision with which physical results may be obtained.

In this paper we investigate the possibility of applying the NLP method to study
some problems appearing in molecular physics. We will see that this method affords
accurate results for the binding energy of electrons in a rather simple way.

2. The Hj ion

In this case we are faced with a two centre potential. The electron moves under
the action of the Coulomb field of two protons separated by a distance R. In the
framework of the Born-Oppenheimer approximation we can study the electronic
motion treating R as a parameter, hence decoupling the electronic motion from the
vibro-rotational molecular behaviour. Although this problem has been extensively
analysed and admits exact solutions {8], we wish to present an alternative treatment
based on NLP method to illustrate its convenience in situations where exact solutions
of the Schrodinger equation are difficult to obtain,
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The Schrodinger equation for NLP we consider in this case reads
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where R; denotes the position of each proton and g, is the corresponding coupling

constant. We use spherically symmetric potentials ©,(#) in order to describe the

clectron ground state. Due to the symmetry of the problem we can write g, = ¢, = ¢

and v, = v, = ». In the Fourier transform space we have
o(p) < :
VP = g s D exp(ipt Ry, 2)
whete
no= Jd‘PeXp(—ip “ RV pW(p) (3)

Hcere f( p) denotes the Fourier transform ol the function f(#). Inserting (2) in (3) we
obtain two algebraic equations for y, and y,. We require the determinant to vanish
for non-trivial solutions. so that
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where we have introduced the notation
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and R = |R, — R.|.

We have found it most appropriate to use the Yamaguchi's NLP [9], which is given
in the position representation by F(r) = (1/r)exp (—#/z), 2 being the Bohr radius in
our case. Notice that the Yamaguchi's potential is simply the Coulomb local potential
timgs the electron ground state wavetunction for this potential, In the Fourier
transform space we have

H = 2 i ——= 6
wWp) = Q"7 L (6)
and (5) now reads

3
X

P = m (7a)
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To calculate the coupling constant g we constder the hmit R — 0 tn (7b). In that
sitnation @ — P and (4) and (7a) lead to

1 — exp[— (Rja)(an — 1))
(R — 1) ) 7o)

g = (} + aw)/dnz’. (8a)

Physically this limit means that we are dealing with the He™ ion, for which the ground
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state energy is E = — 2/ma’. Therefore k = 2/u in (8a) and the coupling constant is
found to be
g = 9/4na’. (8b)
For any arbitrary separation R, (4) may be written as
9/2 j_(%ﬂyy—me}_zl—emL%MﬂMKUD_@)
(1 + ax)” o™ — 1) (R/x)an - 1)

The electron energy £ = x°j2m is a function of R, and may be calculated by
solving (9). The total energy of the HY ion is given by Er(R)} = €’/R — «*(R){2m,
where the first term indicales the repulsion between protons. We find the occurrence
of a minimum of energy at R, = 0-84 A, which is the equilibrium separation. This
value is about 0-2 A smaller than the experimental value (106 A), The total encrgy off
the system at R, is E;(R,) = —15-82eV, in good agreement Lo the experimental
result — 16-27 eV [10]. The relative error is less than 3%. By analogy with the usual
LCAO-MO techniques, these results may be improved, of course, by using a sum of
NLP, each o(r) function being a H-atom orbital times the Coulomb potential 1/r. This
realization could be used to describe cxcited states of the H, ion.

3. Crystal lattices
We consider a periodic arrangement of NLP to study the motion of electrons in
period crystal lattices. We also take attractive potentials (g > 0) and consequently
the Schrédinger equation for £ = — x7f2m < 0 is writlen as

7+ W) gzmr—nqﬁwmwTWW)

T

gY ol(lr — Thexp(iK-T) jdﬁr’ o Wi(r'). (10)
T

where T runs over lattice positions and we have used the Bloch theorem
v + T) = exp(iK - T)j(r). Performing the Fourier transform of (10) and follow-
ing the same steps as before we obtain

1 J" dp p":|v(p)\3 sin(pT)‘
0

= Zexp(lK' T) P r e T (L1}

dng 7

The coupling constant g may be expressed in terms of the bound state energy

E, = — xj/2m of the single-site potential. The energy £, is obtained by neglecting the
effects of the lattice potential duc (o the other atoms. This may be carried out only

considering the term corresponding to T — 0 in the right hand side of (11). In so
doing, we [ind

Lo J a4 Pl

dng 5 PRy
Therefore, inserting (12) in (11) yiclds

' 5 , 1 1 . _ o ple(pl sin(pT)

dpp il | = s — — -] = Y exp(iK-T dp s G

(13)

where the prime indicates the omission of the term T = 0. We now cast the integrals
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in the position space. Defining

Ilk) = x Ix er*-x- dr’ ro(r)rv(r'yexp(—xir — r') — exp[—x{r + )]),

(14a)
JK) = & II dr ru(rysinh xr, {14b)
0
and the structural factor
MK, x) = ZT: %exp [{(K-T — kT, (14c)
one finally gets
RK, «) = [{0c) — I(x)]/27°(x). (15)

We observe that the structural factor only depends on the lattice gcometry
whereas the right-hand side depends on the exact form of the individual potentials.
This enables us to separatc the effects of the topological features of the lattice from
those which manifest the pecularitics of the single-site potential,

As an example we consider a linear chain of NLP of period L. This problem is of
great miterest to study lincar polymer molecules, usually regarded as quasi-one-
dimensional systems, In particular, polyacetylene (CH), has been the focus of much
of the experimental and theoretical work [11]. In this case, the structural factor (14c)
may be calculated analytically., The result is

%m (2cosh(xl) — 2cos(KL)) = x + [Hx,) — Hx))j20(x). (16)

The resulting band structure will depend on the shape function o(r). One of the
most simple functions is w(r) = 8(r — R), i.c. a force field vanishing everywhere
cxcept on a spherical shell of radius R. Using (14) and taking the limit R — 0 in such
a way that x, remains constanl, we find

cos(KL) = cosh{xl) — lexp(i,L). (17)

This expression has been formerly obtained by Demkov and Subramanian [1]
within the SRP approximation, x;' being the scatiering length of the single-site
potential. We conclude that SRP resulls may be obtained as particular cases of our
results. Real values of « in (17), obtained by the usual search methods, give us the
clectron energy E(K) and conscquently the band structure of the lattice. At any value
of r, L. therc cxists one and only one band in the region of negative energies. For large
values of k, (> In4) the band lies entirely in that energy region. The input parameters
are L, which is usually known from X-ray data, and x,.

The effective mass of the particle may also be exactly calculated. This effective

mass is
-2 -1
* K
m = —M|K|=—=
K"y o

and we obtain from the dispersion relation [1]

. B (?2 _ ])l_f'2
m*im = I ma— (18)




Nonlocal separable potentials 1069

withy = Lexp(x.L) + 1. The remaining problem in the calculations of E(K) and m*
is to evaluate k,. This can be done from the experimental band structure. Let E, and
E, be the energy of the top and the bottom of the band. respectively (KL = 0 and
KL = n). and let us define ! = —2mE, and xy, = —2mE,. From (17) we have

koL = In(cosh(x, L) + cosh(x,L)). (i9)

Now we apply these results to study the band structure of polyacetylene. Fink and
Leising [11} have performed a tight binding calculation to obtain

E(K) = [ + 5 + 2B Brcos (KLY {20)

with f, = 3-64eV and #, = 2-75¢eV. Their results are in good agreement with the
observed band structure, although fail in explaining the effective mass. Using (20) we
obtain £ = —0-89eV and E, = —639eV. Taking L = 139 A for a uniform
carbon-carbon bond length [12] we conclude that k, L. = 1-466, corresponding to an
energy level of the isolated potential of —4-23eV. Inserting this value of kL in
(18) we get m*fm ~ 1-65, in cxcellent agreement with the experimental result
mtim = 17 + 01

6. Conclusions

Nonlocal separable potentials may be used to obtain ¢xactly solvable Schrodinger
equations to be applied in several physical problems. Although there arc no theoreti-
cal limitations to the precision of results, we have shown that even naive potentials
lead to accurate results in a rather simple way.
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