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Abstract
A solvable model is developed for electronic structure calculations of shallow hydrogenic
impurities in two-dimensional quantum dots. We replace the actual Coulomb interaction
(local potential) between the electron and the hydrogenic impurity by a projective operator
(non-local separable potential) to determine the resulting electronic states in closed form. It is
shown that non-local separable potentials may be used to accurately calculate the energy shift of
the electronic levels as a function of the size of the quantum dot and the impurity position.

1. Introduction

The binding energy of electrons in a hydrogenic impurity
located in zero-dimensional semiconductor nanostructures,
like quantum dots (QDs) and quantum rings, has been
attracting much attention during the last few years [1–10].
Due to the spatial confinement within the zero-dimensional
nanostructure, the binding energy is strongly enhanced, as
compared to its magnitude in bulk semiconductors or even in
quantum wells or quantum wires [11, 12]. Thus, spectroscopy
tools provide information about the confining properties of
electrons and holes bound to hydrogenic impurities in zero-
dimensional nanostructures [13]. Within the effective-mass
approximation, the interacting electron and impurity pair is
usually described by a Hamiltonian including the Coulomb
potential plus a confining parabolic potential. Since no
analytical solutions are available for off-center impurities,
the binding energy is often obtained by means of variational
techniques [1–6, 9].

In this work we present an alternative approach based on
the non-local (separable) potential (NLP) method, in which the
actual potential is replaced by a projective operator [14, 15]
(for a brief summary of applications of NLP in condensed
matter physics see [16]). The NLP method has already been
successfully used to determine in a closed form the binding
energy of confined excitons in parabolic QDs [17]. This
method yields an exactly solvable envelope function equation
from which the electron states can be readily obtained with the
desired accuracy. Consequently, the effects of the confining
potential on the hydrogenic impurity levels can be studied as a

function of the system parameters (size of the QD and impurity
position) with little computational effort.

2. Model Hamiltonian

Consider a two-dimensional (2D) gas of noninteracting
electrons confined in a zero-dimensional nanostructure in the
presence of a hydrogenic impurity. In the framework of the
effective-mass approximation, the single-electron Hamiltonian
can be written as H = H0 + Vd , where

H0 = p2

2m
+ VQD(r), (1)

Vd(r) = − e2

ε|r − rd | . (2)

Here the pair p and r are the usual momentum and coordinate
in the plane of the 2D electron gas, respectively. The effective
mass of the electron is denoted by m and VQD(r) is the
QD confining potential (to be defined below), assumed to be
independent of the polar angle. The hydrogenic impurity is
located at a position rd from the origin and the Coulomb
potential is screened by the background dielectric constant ε.

Inspired in our previous treatment of Coulomb forces in
parabolic QDs [17], we replace the Coulomb potential Vd(r)

in (2) by an NLP to obtain the envelope function χ(r) from the
effective-mass equation

(H0 + VNL) |χ〉 = E |χ〉, (3)
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where the projective operator is defined as

VNL ≡ −λh̄2

2m
|v〉〈v|. (4)

Here the shape function v(r − rd) will be specified later and λ

is referred to as the coupling constant. It is important to stress
that this replacement is exact, in the sense that it is always
possible to find an NLP (or a sum of them) able to reproduce
any set of given electronic states [18] and, consequently,
there is no theoretical limitation to the numerical accuracy
with which physical results can be obtained. In spite of its
seemingly more complicated form, equation (3) is amenable to
analytical solution for any arbitrary shape function v, provided
the eigenstates of the zero-dimensional nanostructure without
the impurity are known. Therefore, one can test different
functions v(r − rd) until the desired accuracy of the results
is obtained. Typically naive functions with very few adjustable
parameters are good candidates [14, 17, 19, 20].

3. General solution

As mentioned above, equation (3) can be exactly solved for any
arbitrary shape function v(r − rd). To proceed, we consider
the resolvent of the Hamiltonian H0 as follows:

|χ〉 = − (H0 − E)−1 VNL|χ〉
= λh̄2

2m

∑

ν

|φν〉〈φν |
Eν − E

|v〉〈v|χ〉, (5)

where |φν〉 refers to the eigenstates of H0, Eν being the
corresponding eigenvalues. For simplicity we assumed that
the energy spectrum of H0 is discrete, although the case of a
continuous spectrum can also be easily handled (see the next
section). Finally, projecting onto the ket |v〉 and assuming
〈v|χ〉 �= 0 we arrive at

1 = λh̄2

2m

∑

ν

|〈v|φν〉|2
Eν − E

. (6)

This transcendental equation provides the electron energy E
in the zero-dimensional nanostructure in the presence of the
impurity potential, parameterized by the shape function v(r −
rd) and the coupling constant λ. The calculation reduces to
obtain the overlap integral between the shape function and
the eigenfunctions φν . For a smooth shape function, this
overlap will be a decreasing function of Eν since the number
of nodes of φν increases with energy. In other words, the
higher the level, the smaller the numerator of equation (6)
since the overlap of a slow and a fast varying function (v
and φν , respectively) is smaller. Therefore, the summation
over eigenstates can be safely truncated after a few terms of
increasing energy if a closed expression is not available.

4. Donor-bound electron in a 2D semiconductor

Besides the shape function v(r −rd), the NLP is characterized
by the coupling constant λ. We will now demonstrate that
there exists a simple relationship between λ and the bound

state (if any) energy of the electron bound to the donor in an
infinite 2D semiconductor. Therefore, the knowledge of this
energy level carries information about the coupling constant.
The obtained value of the coupling constant will then be
used when the donor is located within a QD (section 5). If
the impurity is located in an infinite 2D semiconductor, the
Hamiltonian (1) reduces to H0 = p2/2m, namely we drop
VQD(r). Due to the translational invariance of H0, we can set
rd = 0 without loss of generality in this case. The energy
spectrum of H0 is continuous and the summation appearing
in equation (6) is replaced by an integration in momentum
space. The eigenstates of H0 are plane waves φp(r) =
(2π h̄)−1 exp(i p · r/h̄) with energy Ep = p2/2m. Notice that
the eigenfunctions are normalized since 〈φp|φp′ 〉 = δ(p − p′).

Let us assume now that H0 + VNL supports a bound state
with energy E2D < 0 and define p2

2D ≡ 2m|E2D|. From
equation (6) we get

1

λ
= h̄2

∫
d2p

|〈v|φp〉|2
p2 + p2

2D

= 1

4π2

∫
d2p

|v(p)|2
p2 + p2

2D

, (7)

where

v(p) =
∫

d2r v(r)eip·r/h̄ (8)

is the Fourier transform of the shape function. From this
expression we can draw several conclusions. Since the right-
hand side of equation (7) is positive (p2D is real for bound
states), the NLP supports a single bound state when λ > 0.
Moreover, since the right-hand side of equation (7) is obtained
as an integration in momentum space, convergence implies that
|v(p)| should decay fast enough at large momenta.

For the sake of concreteness, we now focus on the
Gaussian NLP. Gaussian shape functions were formerly
considered by Knight and Peterson for band-structure
calculations in solids [14]. We then take the following axially
symmetric shape function

v(r) = 1

πa2
exp

(
− r 2

a2

)
, (9)

whose Fourier transform is v(p) = exp(−p2a2/4h̄2). After
performing the integration in equation (7) we arrive at

λ = 4π
exp

(−p2
2Da2/2h̄2

)

	
(
0, p2

2Da2/2h̄2
) , (10)

where 	(b, z) is the incomplete Gamma function [21].
Two free parameters (λ and a) must be set properly to

account for the ground state of a hydrogenic impurity in a
2D semiconductor. The energy level is E2D = −4 Ryd∗,
Ryd∗ being the effective Rydberg. Therefore, p2D = h̄/a2D,
where a2D is the 2D effective Bohr radius, being half the
effective Bohr radius in the bulk semiconductor. However,
the estimation of the potential range a is not obvious.
Previously, we have demonstrated that Yamaguchi’s NLP
provides nearly exact results to describe Coulomb potentials
in 2D geometries [17]. The shape function of Yamaguchi’s
NLP is simply the Coulomb local potential times the ground
state envelope function for this local potential, namely
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vY (r) = (1/r) exp(−r/a2D). Therefore, Yamaguchi’s NLP is
singular at the origin while the Gaussian NLP is regular. This
difference will be important in small QDs, when the envelope
function is strongly localized around the center. Unfortunately,
Yamaguchi’s NLP does not allow us to deal easily with off-
center impurities later and we will focus only on the Gaussian
NLP hereafter. In order to minimize their differences, the
parameter a in (9) should be as small as possible (ideally
a → 0) so that the Gaussian shape function approaches the
δ-function limit. We then take a2 = μa2

2D with μ an adjustable
parameter as small as possible in the numerical calculation.
Finally, the coupling constant is found to be

λ = 4π
e−μ/2

	(0, μ/2)
(11)

in terms of the adjustable parameter μ.

5. Donor-bound electron in a parabolic quantum dot

After having discussed the main features of the NLP in an
unbound medium, we now turn to its application to donor-
bound electrons embedded in zero-dimensional nanostructures.
We consider a parabolic QD with confining frequency ω and
take VQD(r) = (1/2)mω2r 2. The eigenfunctions of H0 in this
case are (see, e.g., [22])

φn�(r, θ) = Rn�(r)
ei�θ

√
2π

� = 0,±1,±2 . . .

n = 0, 1, 2, . . . (12)

with
Rn�(r) = Cn� z|�| e−z2/2 L |�|

n (z2), (13)

where z = r/L, L = √
h̄/mω being the QD size.

L |�|
n (z2) denotes the generalized Laguerre polynomial [21].

The corresponding eigenenergies are Enl = h̄ω(2n +
|�| + 1) and the normalization constant is given by Cn� =
(1/L)

√
2 n!/(n + |�|)!.

5.1. On-center impurity

As an illustrative example, we consider an impurity located at
the center of the QD since equations are simpler. Off-center
impurities are discussed later. If the impurity is located at
the center, the entire nanostructure is axially symmetric. As a
consequence, only s states contribute to summation (6), namely
〈v|φn�〉 vanishes for � �= 0. A straightforward calculation
yields

〈v|φn�〉 = L√
πa2

γnδ� 0, (14)

with

γn =
∫ ∞

0
du exp

[
−1

2

(
1 + 1

μβ

)
u

]
L0

n(u)

= 2μβ

1 + μβ

(
1 − μβ

1 + μβ

)n

, (15)

where the shape function is given by (9). For brevity we
introduced the confining parameter β ≡ a2

2D/2L2. This
parameter determines the magnitude of the donor-bound

Figure 1. Energy of the ground state of a hydrogenic donor, in units
of the 2D effective Rydberg (4 Ryd∗), as a function of the confining
parameter β = a2

2D/2L2. Different values of μ were used in (16).
Circles correspond to the exact ground state energy.

electron confinement in the QD since the larger β , the higher
the confinement. From (6) and (14) we finally get the following
transcendental equation for the eigenenergies:

1 = e−μ/2

	(0, μ/2)

1

(1 + μβ)2
�

[(
1 − μβ

1 + μβ

)2

, 1,
1

2
− E

2h̄ω

]
,

(16)
where � is the Lerch function [23] and we have used (11).

Figure 1 shows the energy of the ground state of a
hydrogenic donor, in units of the 2D effective Rydberg
(|E2D| = 4 Ryd∗), as a function of the confining parameter
β . Several values of the adjustable parameter μ were used in
the calculation. The ground state energy is unchanged in large
QDs (β → 0), as compared to the donor-bound electron in
a 2D semiconductor. By decreasing the QD size the ground
state energy increases, as expected. The results are compared
to the exact ground state energy, obtained by direct numerical
diagonalization of the Hamiltonian H given in (1) and (2) with
rd = 0. As we argued in the previous section, the smaller
the parameter μ, the better the results. Large values of the
parameter μ overestimate the ground state energy. It is worth
mentioning that similar overestimations of the energy levels are
found with more conventional approaches like the 1/N shifted
expansion [24]. Our approach is actually free of this failure
since it is always possible to select a small parameter μ for
which the energy obtained from (16) matches the exact value in
an arbitrary range of the confining parameter β . For instance,
in figure 1 the exact results are very well reproduced by the
NLP approach with μ = 0.01. Notice that the largest confining
parameter in this figure is β = 4, namely L � 0.35a2D (strong
confinement regime, L < a2D). In GaAs a2D = 5 nm and we
conclude that μ = 0.01 gives an excellent estimation of the
ground state energy in small QDs with L = 1.75 nm.

We also carried out a variational calculation in order
to compare it with the NLP approach. To perform the
calculation, we used the following trial function, formerly
introduced in [6] for donor-bound electrons in spherical QDs,
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R(r) = N(η) exp(−r 2/2L2) exp(−ηr), where N(η) is the
normalization constant, λ being the variational parameter.
The results are shown in figure 1. We notice that the
variational approach fails in the strong confinement limit (β
large), as compared to the exact results obtained by direct
diagonalization. It is remarkable that the NLP approach gives
more accurate results even if μ is not too small.

5.2. Off-center impurity

In the preceding paragraphs we have shown that the NLP
provides accurately the energy of an electron bound to an on-
center impurity. In what follows we use the same approach for
a hydrogenic impurity at a position rd from the origin of the
QD. We set the X axis along the direction of rd without loss of
generality. Therefore, the shape function is now

v(r, θ) = 1

πa2
exp

[
− 1

a2

(
r 2 + r 2

d − 2rrd cos θ
)]

. (17)

The overlap between v and φn� appearing in (6) is given by

〈v|φn�〉 =
√

2π

πa2
e−r2

d /a2

×
∫ ∞

0
drre−r2/a2

Rn�(r)I|�|
(

rd r

μβL2

)
, (18)

where I|�|(z) is the modified Bessel function [21]. After some
algebra we obtain

〈v|φn�〉 = L√
πa2

γn exp

(
− r 2

d /L2

2(1 + μβ)

)

×
√

n!
(n + |�|)!

(
rd/L

1 + μβ

)|�|
L |�|

n

[
r 2

d /L2

1 − μ2β2

]
, (19)

with γn given by (15). Notice that this expression reduces
to (14) in the limiting case rd → 0, as expected.

To get an estimation of the binding energy of the electron,
we focus on the magnitude

Ec = E − 1
2 mω2r 2

d , (20)

where E is obtained by solving (6). The last term in the above
equation is nothing but the potential energy at the position of
the donor due to the presence of the QD confining potential.
Figure 2 shows the results for three different donor positions
when μ = 0.01. The curve corresponding to rd = 10−3L
is the same as that given in figure 1 for μ = 0.01, within
the numerical uncertainty. The energy level does not change
much even if the donor is located at a distance half the QD
radius. Remarkably, the binding energy is found to decrease as
the impurity moves apart from the center. This effect is more
pronounced for smaller QDs, as seen by comparing the upper
and lower curves in figure 2. Similar conclusions were drawn
in spherical QDs by using a variational approach to estimate
the impurity binding energy [22].

6. Conclusions

We have introduced a solvable model to obtain the energy
levels of an electron bound to a hydrogenic impurity in QDs.

Figure 2. Energy Ec, in units of the 2D effective Rydberg (4 Ryd∗),
as a function of the confining parameter β = a2

2D/2L2, for different
positions of the donor. μ = 0.01 for all curves.

In the framework of the effective-mass approximation, the
confining potential arising from the QD is assumed to be
parabolic with confining frequency ω. The Coulomb potential
due to the donor is replaced by an NLP. We stress again that this
substitution is exact provided the appropriate shape function
v(r) is used. This function is nothing but the local potential
times the actual envelope function [15]. Thus, the exact
shape function v(r) is known only after solving the effective-
mass equation for the local potential. Therefore, the way to
proceed is to solve the effective-mass equation for an arbitrary
shape function, as we have shown in section 3. Once the
solution is obtained, one can choose a potential shape function
that reproduces the observed energy values of the physical
system being considered. We have proven that a Gaussian
NLP is suitable for describing off-center hydrogenic impurities
in QDs of all sizes for which the effective-mass approach
holds, provided a small value of the parameter μ is selected
(ideally μ → 0). As a major result, we have shown that the
binding energy is found to decrease as the impurity moves apart
from the center. The decrease of the binding energy is more
pronounced at large values of the confining parameter β .

Finally, we stress that the NLP approach introduced above
is not restricted to parabolic QDs but other low-dimensional
nanostructures could also be studied as well. Notice that the
only major requirement of the NLP approach is the knowledge
of the electronic states in the absence of the impurity potential,
namely the eigenstates of the Hamiltonian (2). Fortunately,
the electronic states of several low-dimensional nanostructures
like quantum rings [25, 26] are now well known. These
states are the starting point to study impurity states with little
computational effort within the NLP framework.
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