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Surmmary. — The motion of Klein-Gordon and Dirac particles in constant erossed
electric and magnetic fields in addition to a confining scalar potential is studied in
momentum space. The existence of bound states, as the electrostatic coupling is
smaller than the magnetic and scalar couplings, is found.

PACS 03.65 - Quantum theory; quantum mechanies.
PACS 11.10.Qr - Relativistic wave equations.

1. - Introduction.

Relativistic wave equations with electrostatic and scalarlike linear potentials have
been widely used in phenomenological models to investigate the econfinement of
quarks. Here the term electrostatic means the time component of a Lorentz vector,
while a scalar potential is equivalent to a dependence of the rest mass upon position.
If the potential is electrostaticlike, there exist no bound states[1], and only tun-
nelling solutions arise so that such a potential is not in fact confining. This is
another example of the famous Klein paradox. On the contrary, scalar linear
potentials can bind relativistic particles|[2, 3], giving rise to confinement. Also for a
mixture of these potentials, it is well established that confinement only occurs if the
scalar term is stronger than the electrostatic term[4,5]). All these conclusions are
valid for (3 + 1)- and for (I + 1)-dimensional relativistic wave equations, and have
been demonstrated by solving the equations in the position space.

In this paper we discuss the confining properties of the Klein-Gordon and Dirac
equations for electrostatic and scalar linear potentials varying in one-space
dimension, in addition to a constant crossed magnetic field. Besides its purely
methodological interest, this configuration allows us to know more exactly how
relativistic quarks behave in an external magnetic field, as oceurs in some
astrophysical problems. Relativistic particles in constant crossed electric and

(*) The authors of this paper have agreed to not receive the proofs for correction.
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magnetic fields (a uniform electric field is a simple realization of an electrostatic
linear potential) were previously studied by Lam[6,7] in the position representation.
This author clearly demonstrated that the quantization of energy levels arises if the
strength of the magnetic field is larger than the strength of the electric field. The
solution found by Lam, however, ecannot be applied to study the behaviour of quarks
in external magnetic fields since the existence of a scalar linear potential is required
to confine quarks.

We also show that the motion of relativistic particles under the action of
electrostatic and scalar linear potentials with an orthogonal magnetic field may be
successfully described in momentum space. We find analytical solutions for the
Klein-Gordon and the Dirac equations, which include as special cases those discussed
in position space by Sun and Yuhong[4] (electrostatic and scalar linear interactions)
and by Lam[6,7] (crossed constant electric and magnetic fields).

2, - Klein-Gordoen equation.

To get insight into the problem we start with the Klein-Gordon equation for a
spinless particle of rest mass m and charge ¢

0 {(p — AP +(m + 8P —(E-qVi}y=0,

where the Lorentz vector potential is (V, A) and S denotes the Lorentz scalar
potential. We suppose that V and S vary only along the x-direction

(2@) qV = KV:U »
(2b) S = Ke

and A describes a uniform magnetic field B = V x A in the z-direction, so we can set
the gauge

(2¢) gA = (0, Kgx, 0).
Therefore, the Klein-Gordon equation reduces to
(8) [pZ+2mKg+ EKy—p,Kp)x +
+(KE+ KE-KDal- (E2—m?—p)—pH)yx) =0.

Sinee one can replace # — i(d/dp, ), we can take advantage of the form of the potential
to cast the problem in momentum space. Thus, eq. (3) reads

+

2
d_ 2i(mKs + EKy — p, Kg) d

4 (K% + K3 - K&)
(4) B 5 V ap? ap.

+ E*—m?—pl—p, —pd |dp.) = 0.

We have assumed an exp[i(p,y + p,2)] dependence for the wave funetion since both
p, and p, are constant of motion,
In the particular case Kj+ K3~ K#=0, eq. (4) reduces to a first-order
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differential equation, whose solution is readily found to be

_pi- 3B -m®—p/-p))
! = {f -
® “pe) = H0) e o e e Ry by Ky)

The particle wave function rapidly oscillates for large momentum, being unnor-
malizable in the usual fashion (the solution is not included in L*?). Hence there exist
no bound states in this ease, no matter the sign of the coupling constants, The result
may also be easily understood by noting that eq. (3) with K2 + KZ — K& = 0 becomes a
Schridinger-like equation for a uniform electric field, which is known to present no
bound states.

We now seek for the solutions of the Klein-Gordon equation in the general case
K+ K& — Ki = 0, which is then written as

() R I )
du? “du ' ’

where we have defined the following dimensionless quantities:

u = pr(K;% + K._g - Kl%)—l/4,
(7) £ = (mKs + EKy — p, Kp) (Kj + K§ - K§)™*,
n=(E%—m?-p2—p)(Ki+ K§— K§) .
The variable «* and the parameters &, » may be real (Ki + KZ > K#) or purely
imaginary (Ki + K¢ < K¢). This fact completely determines the asymptotic behav-
iour of ¢ for large momentum,
Assuming an exp[—#? /2 + i#u] dependence of the wave function ¢(z), we obtain a

confluent hypergeometric equation in the variable u? from eq. (4). The sohition
is

&) dw) =expl~u?/2 + i2ul[A F (1 —n— )[4, 1/2; u?) +
+ Bu (8 — n — £)/4, 3/2; )],

A, B being two arbitrary constants. To find conditions for the existence of bound
states (if any), we require the wave function ¢ to be square integrable. Therefore, we
must investigate the asymptotic form of ¢ at high momenta, Using the expansions of
the confluent hypergeometrie functions for a large argument[8] one gets

9 @) ~exp[—u?/2 + itulu T -n- P2,
TA/P(L + 5+ )/ + B/T(8 +n + &)/ + exp[+u® /2 + izu]u @ 171 R,
AP — 5= 8)/ ) + B/I((B —n - 2)/)], |u]—> e,

where some congtant factors have been absorbed in A and B. We now discuss two
possible situations.

i) In the case Kj + K§ > K% the variable « and the parameters », £ are real.
Therefore, to get square integrable solutions, the second term of (9) must vanish.
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This may be accomplished requiring that

(10a) A=0 @B-n-2#)4=0,-1, -2..
or
(108) B=0 (A-p-8)4=0, -1, -2..

because only for these special values of » and & the gamma-function /" becomes
infinite. Thus we are led to the conclusion that there exist bound states if K3 +
+ K% > KZ. In fact, the entire spectrum becomes discrete. Bound-state solutions may
be written in terms of Hermite polynomials

(11) () = exp | —u® /2 + sl H, - (w)

and the corresponding energy levels are given by

(12) (BKg — p Kyl + (BKs + mKy P — (mKg + p,Ks ¥ — (K5 + K§ — K pl =
=(2n — 1) (K} + K§ — K&)',

n being a positive integer. For pure linear scalar potential (Kz = Ky = 0, K¢ = 0) the
energy levels appear in pairs

(13a) E==(p2+p2+@n—1)|Kg|)*

and become independent of the particle mass. For the motion of spinless particles in a
uniform magnetic field, eq. (12) reduces to (Kg= Ky =0, K;# 0)

(136) E==m2tp2+@n-1)|Kg|)"

and also the discrete spectrum becomes symmetric around E = 0.

ii) The situation is quite different in the opposite case, i.e. K + K§ < Ky From
(7) we note that w2, #,»n and ifu become purely imaginary. Therefore, the
gamma-functions appearing in (9) never reach infinite, so the wave function
decreases as $(u) ~u "2 at spatial infinity, being unnormalizable in the usual
fashion. We conelude that particles cannot be bounded if the electrostatic potential is
strong, as K# is larger than K2 + K§. Only scattering solutions appear and the whole
spectrum is continuum. Solutions may be given by means of parabolic cylinder
functions

(14) Yy = (Cr Drjory (V2 + C_ Dy, oV —2u)) exp [iul,

C. being two constants.

3. — The Dirac equation.

In this section we consider relativistic particles with spin one-half, described by
the Dirac equation. The Dirac equation for a Lorentz potential (V, A) plus a scalar
potential is written as

(15) (z(p—ghA)+ m+8) —E - gV} =0,
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where we choose the representation

—_ {0 7 {12 0
(16) a_(a 0)1 }6_(0 “12),

with 7 = (5, g,, 5,) and I, stands for the n X » unit matrix hereafter. To solve the
Dirac equation, we use the ansatz

(17) p={x(p—qA) +3m+ 8+ E-qV)}y,
where the four-component function y satisfies the equation
18)  {(p—qAP +(m+ 8P~ (E—qV)F—qo-Bl, —Lp, S+ qV]a} x =0,

B =V x A being the magnetic field. Therefore, we find that y can be calculated by
solving a Klein-Gordon eguation containing some nondiagonal terms due to the
interaction of the spin with the external potentials. For the potentials given in (2),
eq. (18) may be written in momentum space as

2
(19)  ((Kg + K§— K§) 5 ~ 2l + BEy — poKy)

b

-% —pl—pP—pE+ B m?+ Kyo, Iy — i8Ks + K)o | (p,) = 0.
The matrix operator +Kpgs, I, — i(gKg + Ky)x, becomes independent of p,, so the
asymptotic behaviour of eq. (19) at large values of p, is the same as that of the
Klein-Gordon equation. Therefore, we conclude that there exist bound states only if
K% + K& > K¢, whereas scattering states occur for KZ + KZ < Ky. However, we will
explicitly solve the Dirac equation in the general case KZ + KZ — K§ # 0 to study spin
effects and to find analytical solutions in the momentum representation. We
introduce the dimensionless quantities defined in (7), so eq. (19) reads

(20) & TR M B 7 y(uy =0
du® du ‘ ’

where the matrix M is given by

21) M=
K 0 0 —i(Kg + Ky)
0 ~Kg — (K — Ky) 0
— (K2+ K& - K2 -1/2 ,
(K + A5 2 0 WK — Ky) K 0
WKy ~ Ky) 0 0 ~K;

whose eigenvalues are 2 = *1. Hence solutions of eq. (20) may be constructed as
follows:

(22) ) = f, (u)u,,
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where u, is an eigenvector of M with eigenvalue 2, and the function f(u)
satisfies
d

&g d e ; -
(23) [duz Zefdu u +n+atfifu)=0

which only differs from eq. (6) in the last term. Therefore, we can readily discuss the
following two cases:

i) Weak electrostatic term, K&+ Ki > K. In this case the particle may be
confined with an energy given by

(24) (EKp—p, Ky )V + (EKg + mKy ) — (mKz + p,Ks ¥ — (Ki + K§ - KP)p; =
=2 +1/2 — 2/2)(K§ + K — K3y

with » = 1, 2 ... Therefore, the energy levels of Dirac particles are given in terms of
positive even integers 2r + 1 — A =2, 4..., whereas the energy levels of spinless
particles are given by means of positive odd integers 2n — 1 =1, 3 .... The auxiliary
function f, (») is found to be

(25) fi) =exp[—u?/2 +izu] H, -1 (u)

and the corresponding Dirac wave function may be obtained with the aid of (17} and
{22), which results in a combination of Hermite polynomials.

ii} Strong electrostatic term, K¢# > K% + KZ. As occurs for spinless particles,
Dirac particles cannot be confined in this case, and only scattering solutions exist.
The solution of (23) is

26) filu) = (C}' + D—1/2+¢ +).+52(\/§%) + (7 - D—l/z—r,—A—fz(\/ —2uw) exp [1&u],

where C. denotes two arbitrary constants.

4. — Conelusions.

We may conclude that relativistic particles in constant crossed electric and
magnetic fields in addition to a linear scalar potential may effectively be confined,
whenever the electrostatic coupling is properly limited compared to the scalar and
magnetic couplings. In such a case, the spin of the particle only shifts the energy
levels in eomparison to the energy of spinless particles, but has no effects on the
confining properties of the potential. On the other side, we have only found secattering
states for strong electrostatic couplings, so particles are not confined. To avoid the
leakage of particles (Klein paradox), one must consider additional conditions on the
wave function. Thus a «cut-off» P < « for large values of the particle momentum
leads to the occurrence of bound states, because the wave function becomes square
integrable. The energy levels are found through the econdition (P) =0. This
procedure is equivalent to restrict the motion of particles between two hard walls
separated by a distance Ax < =, 80 electrostatic linear potentials present binding of
particles [9]. A similar argument to that given above has recently been suggested to
regularize overcritical Coulomb potentials in momentum space[10].
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