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Zero-energy peak of the density of states and localization properties of a one-dimensional
Frenkel exciton: Off-diagonal disorder
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We study a one-dimensional Frenkel Hamiltonian with off-diagonal disorder, focusing our attention on the
physical nature of the zero-energy peak of the density of states. The character of excitonic states~localized or
delocalized! is also examined in the vicinity of this peak by means of the inverse participation ratio. It is shown
that the state being responsible for the peak is localized. A detailed comparison of the nearest-neighbor
approach with the long-range dipole-dipole coupling is performed.@S0163-1829~98!03632-7#
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I. INTRODUCTION

Since the pioneering works of Anderson,1 and Mott and
Twose,2 electronic and transport properties of randomly d
ordered systems have been the subject of long-lasting in
est both from fundamental and applied viewpoints.1–5 One-
dimensional~1D! systems are frequently considered beca
they turn out to be simpler than those in three dimensio3

Originally, Mott and Twose2 conjectured that all states ar
localized in 1D systems, for any degree of disorder. Aft
wards, a great deal of work has been devoted to examine
Mott-Twose conjecture~see, for instance, Ref. 6!. However,
it is well-known that electron delocalization appears in 1
random systems with short-range correlations.7,8

Two decades ago, Theodorou and Cohen established
the density of states~DOS! of a 1D tight-binding Hamil-
tonian with nearest-neighbor~NN! interactions and random
off-diagonal elements presents a singularity at the cente
the band.9 These authors used an analytical approach ba
on previous results obtained by Dyson10 for disordered linear
chains of harmonic oscillators. In Ref. 9, it was also sta
that the corresponding state is delocalized as the localiza
length was found to be infinite. Adding some amount
diagonal disorder in the presence of off-diagonal randomn
makes all states localized.11 Remarkably, the first calcula
tions on 1D tight-binding Hamiltonians with only diagon
disorder did not reveal any singularity either in the DOS
in the localization length.12,13 Further, a very weak anomal
~a peak but not a singularity! in both properties mentione
above was found both numerically14 and analytically.15,16

Recently, Fidderet al.have found by numerical diagona
ization of the 1D Frenkel Hamiltonian with off-diagonal di
order that, notwithstanding the singularity of the DOS, t
corresponding state is localized if one includes the lo
range~LR! interactions due to dipolar coupling between d
ferent sites.17 This finding seems to be in contradiction wi
the point of view raised in Ref. 9 suggesting that the st
corresponding to the singularity of the DOS is delocaliz
PRB 580163-1829/98/58~9!/5367~7!/$15.00
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In this paper, we examine in detail the conclusions of Refs
and 17. We address this issue by considering a 1D Fre
Hamiltonian with off-diagonal disorder with NN interaction
and compare the results with those obtained when LR in
actions are taken into account. The rest of the paper is o
nized as follows. In Sec. II, the 1D Frenkel Hamiltonian wi
NN interactions is analyzed. We present arguments aga
those raised in Ref. 9, namely, that the zero-energy sta
localized, even in the NN problem. This conclusion, bas
on analytical considerations, is then confirmed by direct
agonalization of the Hamiltonian. The detailed study of t
1D Frenkel Hamiltonian with LR interactions is presented
Sec. III. Section IV deals with the numerical simulatio
confirming the analytical results. Using numerical diagon
ization of a Frenkel Hamiltonian with LR interactions, w
calculate both the DOS and the inverse participation ratio
be defined below, and study new features of these ma
tudes with respect to the NN approach. Section V conclu
with some comments regarding the results we have obtai

II. IS THE ZERO-ENERGY STATE DELOCALIZED?

In this section we briefly review the arguments of Ref.
leading to the conclusion that the state at the center of
band is delocalized. We present further arguments sugg
ing the opposite point of view and, what is most importa
numerical calculations confirm our statement. Let us c
sider a tight-binding Hamiltonian with only NN interaction

H5(
n

Un,n11~ un&^n11u1un11&^nu!, ~1!

where the NN interactions$Un,n11% are assumed to bed
correlated and similarly distributed stochastic variables. T
state vectorun& represents an excitation atsite n. All site
energies are set to zero since no diagonal disorder is
cluded. The eigenvalue problem of the NN model reads
5367 © 1998 The American Physical Society



re

r
b

th

f.
at

a
all

ta

e
n
a

a
at

tic
e

lly
t
,

y

-

x
er

nd
ng

m-

s.
de-
kel

-
all
di-

h-

for

the
ari-

al-
D-
rder

of

r-
the

5368 PRB 58KOZLOV, MALYSHEV, DOMÍ NGUEZ-ADAME, AND RODRÍGUEZ
Un,n11an111Un,n21an215Ean , ~2!

where the set$an% represents the real eigenvector cor
sponding to the eigenenergyE. For zero energy Eq.~2! gives
the recurrence relationan1152(Un,n21 /Un,n11)an21. Us-
ing this relation one can find

a2n115S 2
U2n,2n21

U2n,2n11
D S 2

U2n22,2n23

U2n22,2n21
D . . . S 2

U2,1

U2,3
Da1 .

~3!

The amplitudes at even positions vanish. The eigenvecto~3!
represents the zero-energy state for a chain with odd num
of sites. Defining the localization length at the center of
bandL(E50) by the expression

1

L~E50!
52 lim

n→`

1

2n
lnUa2n11

a1
U, ~4!

and applying the central-limit theorem, the authors of Re
obtained 1/L(E50)50. From this result they concluded th
the state at center of the band was extended.

The definition of the localization length~4! is based on an
unconditional assumption of the so-called exponential loc
ization. Indeed, in such a case one would have typic
a2n11;exp@2(2n11)/L#. Certainly, the definition~4! cannot
discern between a weaker than exponentially localized s
~where the amplitudea2n11 decreases or increases withn
slower than an exponential! and an extended state~where
a2n11;1/AN with N→` being the number of sites in th
chain!. In such a case, the mean extension of the eigenfu
tions or the inverse participation ratio are the more adequ
quantities for learning the character of the state.

The results presented below show that the problem we
discussing just belongs to those that cannot be adequ
analyzed from the assumptions leading to Eq.~4!. First, let
us write the NN interactions in the formUn,n115U0(1
1jn,n11), wherejn,n11 are Gaussian distributed stochas
variables with variancej0

2!1. Then, it is easy to calculat
the probability distribution ofj2n11[ lnua2n11 /a1u,

g~j2n11!5
1

A4pnj0

expS 2
j2n11

2

4j0
2n

D . ~5!

From this, the authors of Ref. 18 claimed that typica
ua2n11 /a1u;exp(62j0An). If so, one should conclude tha
the zero-energy state is localized rather than extended
contradiction with the statement of Ref. 9.

Further, using Eq.~5! we can calculate the probabilit
distribution ofx2n11[ua2n11 /a1u,

f ~x2n11!5
1

A4pnj0x2n11

expS 2
ln2x2n11

4j0
2n

D . ~6!

This function has a sharp peak atxmax5exp(22j0
2n) and a

very broad tail for large x2n11 such that ^x2n11&
5*x f (x)dx5exp(j0

2n). Thus, it is rather difficult to make a
definite conclusion from Eq.~6! concerning a typical depen
dence ofua2n11 /a1u on n. Nevertheless, the fact thatf (0)
50 certainly indicates the zero probability to obtain an e
tended state. Below, we confirm this observation by num
cal simulations.
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III. FRENKEL HAMILTONIAN

We will be also interested in studying both the DOS a
the degree of localization of states of a 1D tight-bindi
Hamiltonian including all~LR! interactions, beyond the NN
interactions. According to this, we then introduce the co
plete Hamiltonian

H5 (
m,n51
mÞn

N

Umnum&^nu, ~7!

in which summation is performed now over all pairs of site
For definiteness, it is assumed hereafter that excitations
scribed by the presented Hamiltonian correspond to Fren
excitons. Furthermore, theUmn is assumed to be of dipole
dipole nature. We restrict ourselves to the case in which
transition dipole moments have the same magnitude and
rection. Thus, one can takeUmn52U/ujm2jnu3, where
2U (U.0) is the dipole-dipole coupling of nearest neig
bors in the periodic lattice, i.e., atjm2jm1151 ~we chose
here the negative sign of NN coupling as it takes place,
example, inJ aggregates17!, andjm5m1dm with dm being
stochastic variables assumed to be distributed around
regular sequence according to the Gaussian law with v
ances2,

P~dm!5S 1

2ps2D 1/2

expS 2
dm

2

2s2D . ~8!

A. The exciton spectrum and the DOS
in the absence of disorder

Before any discussions of the effects resulted from loc
ization, it is useful to recall the peculiar features of the 1
exciton spectrum and of the DOS in the absence of diso
(dm50). Then the Hamiltonian~7! can be approximately
diagonalized~with accuracy of the order ofN21) by intro-
ducing the excitonic basis19

uk&5S 2

N11D 1/2

(
n51

N

sinS pkn

N11D un&. ~9!

The state vectoruk& represents an exciton in thekth state.
Substituting Eq.~9! into Eq. ~7! one obtains19

H5 (
k51

N

Ekuk&^ku, ~10a!

Ek522U (
n51

N 1

n3 cosS pkn

N11
D 1O~N21!. ~10b!

Equation~10b! generalizes the corresponding expression
the NN approximation@n51 term in Eq.~10b!# to the case
of including all ~LR! interactions. We are especially inte
ested in the behavior of the spectrum and of the DOS in
vicinity of extreme points,K[pk/(N11)50 andK5p, as
well as at the center of the band,k5(N11)/2 (N taken to
be odd!. To do that, we exploit the following equation:20

(
n51

`
cosKn

n
52 lnS 2sin

K

2 D ~11!
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and the fact that one can extend the sum in Eq.~10b! up to
infinity becausen23 decreases withn fast enough. Then, by
integrating Eq.~11! twice with respect toK, the sum in Eq.
~10b! can be cast into the form19

Ek522Uz~3!1US 3

2
2 ln K DK2, K!1, ~12a!

Ek5
3

2
Uz~3!2U ln 2~K2p!2, K2p!1, ~12b!

wherez(3)5(n51
` n23'1.202. The corresponding formula

within the NN approximation areEk522U1UK2 if K!1
and Ek52U2U(K2p)2 if K2p!1. Thus, one can con
clude that LR interactions affect the position of both t
bottom and the top of the band as well as the DOS of
excitons. As we can see, the bottom and top of the b
change, respectively, shift from22U to 22Uz(3)'
22.404U and from 2U to (3/2)Uz(3)'1.803U. The DOS
decreases approximately by the factorAlnuEu in the vicinity
of the bottom of the band and, on the contrary, grows by
factor 1/ln 2 close the top.

Finally, we would like to comment on the energy of th
central exciton band state, withk5(N11)/2. In the NN
model, one finds thatE(N11)/250, while with including all
dipolar couplings, this energy is shifted to

E~N11!/2522U (
n51

N 1

n3 cosS pn

2
D'0.225U. ~13!

The DOS in the vicinity of the band center does not chan
noticeably as compared to the NN model.

B. Motional narrowing effect

In the presence of disorder, the Hamiltonian of the syst
can be written as a sum of two parts: the unperturbed
~10! and a term produced by the fluctuations ofUmn ,

H5 (
k51

N

Ekuk&^ku1 (
k,k851

N

Dkk8uk&^k8u, ~14a!

Dkk85
2

N11 (
m,n51

N

dUmnsinS pkn

N11D sinS pk8m

N11 D ,

~14b!

wheredUmn5Umn2Ū, whereŪ means averaging over th
probability distribution~8!. HereDkk8 have diagonal and off-
diagonal parts. The former is responsible only for the inh
mogeneous broadening of excitonic levels, while the la
couples the excitonic modes and, therefore, causes the l
ization effects.

The Dkk8 undergo fluctuations becausedUmn fluctuate.
Assuming NN coupling and thatdUmn fluctuations are smal
in some sense~see below!, we can find theDkk8 distribution
in an analytical form. This also helps us to comment on
results of numerical simulations that we discuss later in S
IV.

In order to achieve the task, we use the definition
d
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P~Dkk8!5K dH Dkk82
2

N11 (
n51

N21

dUn,n11

3FsinS pkn

N11D sinS pk8~n11!

N11 D
1sinS pk8n

N11D sinS pk~n11!

N11 D G J L . ~15!

Here, angular brackets indicate the average of thed function
over the fluctuations of NN distances. They obey a Gauss
distribution law like Eq.~8! but replaces2 by sNN

2 52s2.
We omit the details of tedious but straightforward trigon
metric calculations and only quote the final results.

It can be easily shown that the sum in Eq.~15! is exactly
equal to zero ifk1k85N11. Particularly, this means tha
Dkk850 for k5k85(N11)/2 whenN is taken to be odd,
i.e., the first-order correction to the central energy is exac
equal to zero and does not fluctuate. Fluctuations of the o
Dkk8 are distributed according to the Gaussian function w
variances of the diagonal and off-diagonal elements distri
tion, sd

2(k) andsnd
2 (k,k8), given by

sd
2~k!5

~6sU !2

N11 F21cosS 2pk

N11D G , kÞ
N11

2
,

~16a!

snd
2 ~k,k8!5

~6sU !2

N11 F11cosS pk

N11D
3cosS pk8

N11D G , k1k8ÞN11. ~16b!

From Eq. ~16! one can conclude that, in the case of o
diagonal disorder, the motional narrowing effect is al
present as it takes place for diagonal disorder,21 i.e., both
magnitudes in Eq.~16! scale as (N11)21. We should point
out that, in contrast to diagonal disorder, here the magnitu
sd andsnd are functions of the state numbers. Note also t
sd(k) goes through its minimum value exactly at the cen
of the exciton band, i.e., atk5(N11)/2 andk5N/2 at N
taken odd and even, respectively. In fact, we can also as
this with respect to the value ofsnd(k,k8) sincek and k8
cannot differ greatly provided the conditionsnd(k,k8)!U.

To conclude this section let us comment on the validity
the motional narrowing effects. Obviously, this is valid on
whensnd,uEk2Ek11u. In this case, the excitonic states a
not mixed by the perturbation and remain extended over
whole chain. They are essentially mixed for the opposite s
of inequality, reducing their localization lengths. Then, t
number of sites within the region of localization (N* ) drives
the motional narrowing effect rather than the whole num
in the chainN. In Refs. 19 and 22 a self-consistent rule f
estimation ofN* is carried out.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

Further, we will mainly focus our attention on the norma
ized density of statesr(E) and on the degree of localizatio
@inverse participation ratio~IPR!# for the states at energyE.
They are defined, respectively, as follows:17
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r~E!5
1

NK (
k

d~E2Ek!L , ~17a!

L~E!5
1

Nr~E!K (
k

d~E2Ek!S (
n51

N

akn
4 D L , ~17b!

where the angular brackets indicate an average over an
semble of disordered linear chains and theakn is the eigen-
vector of the Hamiltonian~7! corresponding to the eigen
valueEk with k51,2,3, . . . ,N,

(
m51

N

Unmakm5Ekakn . ~18!

The IPR behaves like 1/N for delocalized states spreadin
uniformly over the entire system on increasingN. In particu-
lar, the IPR can be exactly computed for the eigenstate
the periodic lattices given in Eq.~9!. In doing so we obtain
the expected behavior forN→`. On the contrary, localized
states exhibit much higher values. In the extreme case, w
the exciton is localized at a single site, the IPR becom
unity. Therefore, the scaling analysis of the IPR as a func
of the system size provides valuable information about
nature of the excitonic states. We should mention that a c
plete multifractal analysis, accomplished by studying
scaling of the other moments of the probability distributio
is beyond the scope of this work.

We have solved numerically the eigenvalue problem~18!
for different values of disorder, namely, the mean fluctuat
of the NN distance,sNN5A2s, to study the features of bot
the DOS and the IPR discussed above. In our numer
treatmentsNN ranges from 0~periodic lattices! up to 0.32
whereas the maximum system size we have considere
N52500. Results comprise averages over 50 realization
the disorder for each given pair of parametersN andsNN .

A. Nearest-neighbor approximation

Let us comment on the results we have obtained for
NN approximation. Figure 1 shows the DOS for the larg
lattice size we have considered (N52500) and different val-

FIG. 1. Density of states in the frame of NN coupling when t
lattice size isN52500 and the degree of disorder is~a! sNN

50.02, ~b! 0.04, and~c! 0.16.
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ues of the disorder (sNN50.02,0.04,0.16 from top to bot
tom!. We observe that the DOS is symmetric about the c
ter of the band. The singularities at the edge of the exci
band are smeared out on increasing the degree of diso
Interestingly, a sharp peak in the DOS at the center of
exciton band appears when the degree of disorder exc
some threshold value (sNN'0.03 for our model parameters!.
We will discuss this point further later. We have also o
served that the percentage of states in the DOS peak
creases with the degree of disorder. In addition, the am
tude of the peak rises noticeably with increasing the num
of sites in the lattice, as seen in Fig. 2 forsNN50.08.

The IPR presents an overall increase when the degre
disorder increases, meaning that the larger the degree of
order, the smaller the exciton localization length. This
clearly observed in Fig. 3, where we show the IPR as
function of the exciton energy for the same parameters
Fig. 1. However, the increase of the IPR strongly depends
the energy, being more pronounced close to the center o
band. Simultaneously with the occurrence of the peak of
DOS, a hardly visible dip arises in the IPR at zero ener

FIG. 2. Density of states in the frame of NN coupling when t
degree of disorder issNN50.08 and the lattice lattice size is~a!
N51000,~b! 1500, and~c! 2500.

FIG. 3. Inverse participation ratio for the same cases shown
Fig. 1. Notice the overall increase on increasing the degree of
order.
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This dip is better revealed for larger lattices, as it can be s
in Fig. 4 for the same parameters of Fig. 2.

As mentioned above, the scaling of the IPR with the l
tice size may be useful to discern the nature of the eig
states. The IPR at the center of the band for different val
of the degree of disorder is plotted in Fig. 5 as a function
the lattice size. The IPR for periodic lattices scales very
curately as 1/N, hence indicating that their eigenstates spre
uniformly over the whole lattice. As soon as some amoun
disorder is introduced in the system, the IPR follows a pow
law for smallN but tends to a constant value for largeN, as
plotted in Fig. 5. The critical size for which deviation from
power fit occurs decreases upon increasing the degree o
order. The constant value of the IPR for largeN increases
with the degree of disorder, indicating that the eigenstate
the center of the band actually become more localized.

Summarizing these observations for the NN approxim
tion, we are led to two main conclusions. First, the ze
energy peak of the DOS really exists. Moreover, as its wi
shows no dependence on the degree of disorder~at least,
when the latter ranges over the interval used in our sim
tions!, we are inclined to identify this peak with ad-like

FIG. 4. Inverse participation ratio for the same cases show
Fig. 2. The inset shows an enlarged view of the center of the b

FIG. 5. Scaling of the inverse participation ratio with syste
size for the eigenstates at the center of the band. Labels indicat
degree of disorder.
en
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singularity rather than to the famous Dyson singular
;1/uEu ln3uEu. This singularity was found first for a specia
distribution of the NN hopping integral in the form of
generalized Poisson function.10 Second, the correspondin
eigenstates show no tendency to delocalization with ris
lattice size contrary to the opposite statement done in Re
Moreover, they are not more delocalized than those of en
gies close to zero.

B. All interactions

Effects of inclusion of all dipolar interactions in Eq.~18!
on the DOS and IPR has been already discussed in Ref
Nevertheless, it has been done only for a fixed value of
chain length (N5250) and the degree of disorder (s
50.08). Below we present our DOS and IPR numerical d
obtained by varying bothN ands.

Figures 6 and 7 show the results of numerical calculati
of both the DOS and the IPR for different values of t
degree of disorder andN52500. Here, one can observe th
usual changes of both magnitudes as compared to thos
the NN approximation: asymmetry and shift of the exciton

in
d.

the

FIG. 6. Density of states in the frame of LR coupling when t
lattice size isN52500 and the degree of disorder is~a! sNN

50.02, ~b! 0.04, and~c! 0.16.

FIG. 7. Inverse participation ratio for the same cases shown
Fig. 6.
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band edges, both in a good agreement with the analy
results presented in Sec. III A.

In addition, some new features appear, namely, the p
in the DOS has a finite width and is shifted from zero ene
to a somewhat higher valueEpeak'0.21U for low degree of
disorder, in full correspondence with the results of numeri
simulation done in Ref. 17. Higher values of the degree
disorder lead to a smaller energy shift. Further, a peak in
IPR appears at the same energy as the DOS peak, w
finite width as well. The last observation means that
states forming the DOS peak become more localized as c
pared to those with close energies, in contrast to the cas
the NN interaction. This is also confirmed by the scaling
the IPR forEpeak with the system size~not shown here!: In
all cases we observe higher values of the IPR in compar
with those shown in Fig. 5. Besides that, the trend is simi
that is, the IPR scales as 1/N only for perfect lattices,
whereas it tends to a constant value for nonzero degre
disorder.

C. Discussion

Now let us discuss the origin of the features of the DO
and of the IPR found in numerical simulations.

1. NN interaction

Obviously, the zero-energy peak in the DOS might app
when the states at the center of the exciton band bec
localized, i.e., their localization lengths are reduced to val
less than the lattice size. This occurs when the reduced
gree of disorder due to motional narrowing,snd(0,0)
56sNNU/(N11)1/2, exceeds the energy spacing at the c
ter of the band,DE52pU/(N11). Equalizing these two
magnitudes one obtains an estimation for athreshold of
mean fluctuations of the NN distances to observe the p
sNN

th 'U/(N11)1/2. ThussNN
th '0.02 forN52500, which is

in a good agreement with the numerical data of Fig. 1.
With regard to the fact of why this peak appears, we c

suggest two explanations that seem to be suitable for
model under consideration. First, as the distribution of dis
der we used has long tails then, owing to possible large fl
tuations of the NN distances, strongly interactingdimerscan
be created whose level splittings noticeably exceed the t
cal magnitude of the intersite interactionU. Consequently,
the whole chain is broken into several independent segm
in the sense that two adjacentdimers produce a potentia
well for the exciton, localizing it into the segment bound
by them. As the zero eigenenergy is always present i
segment with odd number of sites, one can expect a pea
the DOS at this energy~a similar explanation of the zero
energy peak of the DOS was suggested in Ref. 18!. The peak
amplitude increases with disorder simply because of the
ing of the number of segments as the degree of diso
grows. Appearance of such strongly interacting dimers
clearly seen from the fact that the IPR approaches 0.5 a
DOS tails~see Figs. 3 and 4!.

Recently, it was demonstrated that the Dyson singula
of the DOS appeared even for a boxlike distribution
disorder.23 Then, the explanation above fails due to the a
sence of large fluctuations of the NN randomness at a
magnitude of the degree of disorder. In such a case, ano
al
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cause for the occurrence of the zero-energy peak in the D
can be proposed. As we have already noted in Sec. III B,
first-order correction to the central energy is equal to zero
chains with an odd number of sites and has a minimum
fluctuation in the case of an even number of sites. The ze
energy peak indicates that the central band eigenenergie
more stable to perturbations than the remaining ones. T
certainly will result in a peak of the DOS after averagin
over realizations of disorder. It is remarkable that simu
tions done for a special type of disorder—which has no
fect on a certain excitonic level in the sense that the fi
order correction to the energy vanishes—show an analog
peak in the DOS at this energy.24 Thus, thisempirical rule
can serve for inspecting the appearance of peaks in the D
for the tight-binding Hamiltonian. As the last treatment do
not use any specific peculiarities of the NN-randomness
tribution, it seems to be suitable for any other distributio
We suppose that, for the model considered in this paper, b
mechanisms discussed above contribute to the formatio
the zero-energy peak in the DOS.

Concluding this subsection, note that the degree of loc
ization of the central states obtained from the numeri
simulation is in a good agreement with the theoretical e
mates based on a self-consistent rule proposed in Refs
and 22~see the first paragraph of the present subsection!.

2. All interactions

As it was stated in Ref. 17, the energy shift of the DO
peak,Epeak'0.21U, agrees very well with the energy of th
central band state in the absence of disorder, Eq.~13!. We
are also inclined to relate this peculiarity to a state of ana
gous origin, i.e., similar to sin(pn/2). This can be demon
strated at least in the perturbative limit. Moreover, exploiti
this analogy further, we should assume that the chara
~having no amplitude on the half of sites! of the mentioned
eigenstate has not to be changed dramatically~at least, in
average!, when passing from the NN model to the exact on
as it is the case for the problem without disorder.19

The singularity of the DOS becomes broader with inclu
ing all dipolar couplings. At least two effects can contribu
to this broadening. As it was supposed above, the DOS p
results from the isolated segments of odd number of si
which, in turn, originate from large fluctuations of the N
distances. At moderate magnitudes of disorder we are ma
dealing with, the simultaneous strong reduction of the d
tance between a nearest-neighbor pair and the distances
other neighbors is unlikely. Thus, for the very beginning, o
can consider adjacent segments as independent of each o
Then, the eigenenergy of the local~belonging to a certain
segment! central band state will fluctuate, owing to fluctu
tions of the segment lengths@see Eq.~13!#, and thus will
produce inhomogeneous broadening of the DOS peak.
second probable origin of this effect is the coupling of d
ferent isolated segments due to the interaction with far ne
bors.

In Ref. 17, the appearance of the IPR peak was explai
by an exceptional property of this characteristic with rega
to the central band state,k5(N11)/2, characterized by the
wave function@2/(N11)#1/2sin(pn/2). Even in the absence
of disorder, the IPR defined by Eq.~17b! shows stronger
localization of this state@L52/(N11)# as compared to lo-
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calization of the remaining states@L53/2(N11)#.17 The au-
thors of Ref. 17 asserted that the IPR peak in the presenc
disorder reflected a remnant of this special state in th
forming the peak. At the moment, we do not see any ot
explanation of the origin of this anomaly. If so, a simil
feature might be manifested in the NN problem, too. Nev
theless, as follows from our simulations done for the N
problem, the IPR displays a dip rather than a peak. O
reason for such a difference may be the fact that the z
energy state is not exponentially localized in the NN probl
~see Sec. II!. It results in a larger extension of this state
compared to the others. In principle, such a large exten
can compensate the IPR anomaly coming from the spe
character of the zero-energy state~having no amplitude at al
on half of the sites! giving rise to the same value of the IP
at E50 and at surrounding energies.

V. SUMMARY

The numerical study of the problem of the zero-ene
peak of the DOS for a one-dimensional Frenkel chain w
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ac
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e
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n
ial

y
h

only off-diagonal randomness shows that the peak is re
present. In the NN approximation, it is located at the cen
of the excitonic band and tends to convert to a singularity
the size of the chain increases. The states belonging to
peak are localized and do not display any tendency to d
calization with increasing chain size. Moreover, the deg
of localization~IPR! does not differ very much from that o
the surrounding states. The inclusion of couplings due to
neighbors shifts the peak to a slightly higher energ
('0.21U), while the IPR, in contrast to the NN problem
shows a peak at the same energy.
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