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Zero-energy peak of the density of states and localization properties of a one-dimensional
Frenkel exciton: Off-diagonal disorder
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We study a one-dimensional Frenkel Hamiltonian with off-diagonal disorder, focusing our attention on the
physical nature of the zero-energy peak of the density of states. The character of excitoni¢ostalieed or
delocalizedis also examined in the vicinity of this peak by means of the inverse participation ratio. It is shown
that the state being responsible for the peak is localized. A detailed comparison of the nearest-neighbor
approach with the long-range dipole-dipole coupling is perforrh®6163-182808)03632-7

I. INTRODUCTION In this paper, we examine in detail the conclusions of Refs. 9
and 17. We address this issue by considering a 1D Frenkel
Since the pioneering works of Andersbmnd Mott and  Hamiltonian with off-diagonal disorder with NN interactions
Twose? electronic and transport properties of randomly dis-and compare the results with those obtained when LR inter-
ordered systems have been the subject of long-lasting inteactions are taken into account. The rest of the paper is orga-
est both from fundamental and applied viewpoitsOne-  nized as follows. In Sec. Il, the 1D Frenkel Hamiltonian with
dimensional1D) systems are frequently considered becaus&N interactions is analyzed. We present arguments against
they turn out to be simpler than those in three dimensions.those raised in Ref. 9, namely, that the zero-energy state is
Originally, Mott and Twos® conjectured that all states are localized, even in the NN problem. This conclusion, based
localized in 1D systems, for any degree of disorder. After-on analytical considerations, is then confirmed by direct di-
wards, a great deal of work has been devoted to examine ttggonalization of the Hamiltonian. The detailed study of the
Mott-Twose conjecturésee, for instance, Ref)6However, 1D Frenkel Hamiltonian with LR interactions is presented in
it is well-known that electron delocalization appears in 1DSec. lll. Section IV deals with the numerical simulations
random systems with short-range correlati6fs. confirming the analytical results. Using numerical diagonal-
Two decades ago, Theodorou and Cohen established thization of a Frenkel Hamiltonian with LR interactions, we
the density of state¢DOS) of a 1D tight-binding Hamil- calculate both the DOS and the inverse participation ratio, to
tonian with nearest-neighb@NN) interactions and random be defined below, and study new features of these magni-
off-diagonal elements presents a singularity at the center dhides with respect to the NN approach. Section V concludes
the band® These authors used an analytical approach basedith some comments regarding the results we have obtained.
on previous results obtained by DySBfor disordered linear
chains of harmonic oscillators. In Ref. 9, it was also stated
that the corresponding state is delocalized as the localization

length was found to be infinite. Adding some amount of |n this section we briefly review the arguments of Ref. 9
diagonal disorder in the presence of off-diagonal randomnesgading to the conclusion that the state at the center of the
makes all states localizéd.Remarkably, the first calcula- band is delocalized. We present further arguments suggest-
tions on 1D tight-binding Hamiltonians with only diagonal ing the opposite point of view and, what is most important,
disorder did not reveal any singularity either in the DOS ornumerical calculations confirm our statement. Let us con-
in the localization length®*® Further, a very weak anomaly sider a tight-binding Hamiltonian with only NN interactions,
(a peak but not a singularityin both properties mentioned
above was found both numericdifyand analytically:>°

Recently, Fiddeet al. have found by numerical diagonal- H= 2 Unnsa(In)(n+ 1]+ |n+1)(n]), )
ization of the 1D Frenkel Hamiltonian with off-diagonal dis- n '
order that, notwithstanding the singularity of the DOS, the
corresponding state is localized if one includes the longwhere the NN interaction§U, ..} are assumed to bé
range(LR) interactions due to dipolar coupling between dif- correlated and similarly distributed stochastic variables. The
ferent sited” This finding seems to be in contradiction with state vectorln) represents an excitation aite n All site
the point of view raised in Ref. 9 suggesting that the statenergies are set to zero since no diagonal disorder is in-
corresponding to the singularity of the DOS is delocalized cluded. The eigenvalue problem of the NN model reads

II. IS THE ZERO-ENERGY STATE DELOCALIZED?
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Unns18ns1+Unn-18n-1=Eay, ®) lll. FRENKEL HAMILTONIAN

where the sefa,} represents the real eigenvector corre- We will be also interested in studying both the DOS and

sponding to the eigenener@y For zero energy Edq2) gives  the degree of localization of states of a 1D tight-binding

the recurrence re|atioan+1: _(Un,n—llun,n+1)an—l' Us- Hamiltonian including aII(LR) interactions, beyond the NN

ing this relation one can find interactions. According to this, we then introduce the com-
plete Hamiltonian

a _( Uznon-1|[ UYzn-2x-3 ( U2,1a N
n+1=| - T
Uznzn+1 Uon-2:-1 Uzs H= 2 Undm)nl, (7)
m,n=1
m#n

The amplitudes at even positions vanish. The eigenvé8jor . , L . .
represents the zero-energy state for a chain with odd numb& Which summation is performed now over all pairs of sites.

of sites. Defining the localization length at the center of the' ©F definiteness, it is assumed hereafter that excitations de-
bandL(E=0) by the expression scribed by the presented Hamiltonian correspond to Frenkel

excitons. Furthermore, thd,, is assumed to be of dipole-
dipole nature. We restrict ourselves to the case in which all
' (4)  transition dipole moments have the same magnitude and di-
rection. Thus, one can take ,,=—U/|&n— &,|3, where
and applying the central-limit theorem, the authors of Ref. 9—U (U>0) is the dipole-dipole coupling of nearest neigh-
obtained 1 (E=0)=0. From this result they concluded that bors in the periodic lattice, i.e., &,—&yn.1=1 (we chose
the state at center of the band was extended. here the negative sign of NN coupling as it takes place, for
The definition of the localization lengt) is based on an example, inJ aggregates), and é,=m-+ 5, with &, being
unconditional assumption of the so-called exponential localstochastic variables assumed to be distributed around the
ization. Indeed, in such a case one would have typicallyegular sequence according to the Gaussian law with vari-
asn+ 1~ €exXd —(2n+1)/L]. Certainly, the definitiori4) cannot anceo?,
discern between a weaker than exponentially localized state 2 >
(where the amplitude,,,,, decreases or increases with (1 _ ﬁ
Plom)=|5——2| € 552 ®

_r lim —in|22n+1
L(E=0) 2n

n—oo

ai

slower than an exponentjahnd an extended stat@&here

asn+1~1/\N with N—o being the number of sites in the

chain. In such a case, the mean extension of the eigenfunc- A. The exciton spectrum and the DOS
tions or the inverse participation ratio are the more adequate in the absence of disorder
guantities for learning the character of the state.

The results presented below show that the problem we are B_eforg any discussions of the effepts resulted from local-
ization, it is useful to recall the peculiar features of the 1D-

discussing just belongs to those that cannot be adequately". ; ;
analyzed from the assumptions leading to E&). First, let xciton spectrum and of the DOS in the absence of disorder
' ' (6,=0). Then the Hamiltoniar(7) can be approximately

us write the NN interactions in the for,, ,,1=Uy(1 X . . il X
; ftpiby | . diagonalized(with accuracy of the order dil~1) by intro-
+ , where are Gaussian distributed stochastic ) S '
Ennr1) Snn1 ducing the excitonic basi$

variables with variancé3<1. Then, it is easy to calculate
the probability distribution o, 1=In|ag,.1/a4],

1 g%n-%—l
9(éon+1)= exp — > |- . .
V4mné, 4¢£6n The state vectotk) represents an exciton in theh state.
Substituting Eq(9) into Eq. (7) one obtain®’

From this, the authors of Ref. 18 claimed that typically

1/2 N

> sin
n=1

akn

N+1

0= N1

n). (€)

©)

lagns1/a;] ~expE2&y/n). If so, one should conclude that N
the zero-energy state is localized rather than extended, in H= >, Eyk)(K|, (108
contradiction with the statement of Ref. 9. k=1
Further, using Eq(5) we can calculate the probability N
distribution of xon+1=|asn+1/a4] 1 7kn -
2n+1 2n+1/A1], Ek:_ZUE ECO _1 +O(N l)_ (10b)

1 IN®X2n+1 "
f(Xon+1)=—==—=—""6xg ————|. (6)  Equation(10b generalizes the corresponding expression of
4mNEoX2n+1 40N the NN approximatiorin=1 term in Eq.(10b)] to the case

This function has a sharp peak gha=exp(—2&n) and a of inclyding all (LR_) interactions. We are especially in.ter-
very broad tail for large yns1 such that (xzn.1) e_st_et_d in the behawor_of the spectrum and of the DOS in the
= [ xf(x)dx=exp@n). Thus, it is rather difficult to make a Vicinity of extreme pointsK=7k/(N+1)=0 andK =, as
definite conclusion from Eq(6) concerning a typical depen- Well @s at the center of the banki=(N+1)/2 (N taken to
dence of|a,,. ,/a;| on n. Nevertheless, the fact tha(0) D€ 0dd. To do that, we exploit the following equatich:
=0 certainly indicates the zero probability to obtain an ex- o
tended state. Below, we confirm this observation by numeri- 2
cal simulations. n=1

coKn
=—In

K
. 23|n—) (11

2
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and the fact that one can extend the sum in @§b) up to N-1
infinity becausen 2 decreases with fast enough. Then, by P(A )=\ 8 A — mE 0Un n+1
integrating Eq(11) twice with respect tK, the sum in Eq. n=1
(10b) can be cast into the forfh

[ wkn\  [@wk'(n+1)
3 XIS NFT/SN T NF T
E.=—2U(3)+U|=—InK|K2, K<1, (12
k {3)+U[5=In ) (123 (mk'n\ [ mk(n+1) s
+smN+1 Si NT1 . (19

3
Ex=5Ud(3)~UIn2(K- m? K-m<1, (120  Here, angular brackets indicate the average ofstfienction
over the fluctuations of NN distances. They obey a Gaussian
where{(3)=3%_,n"3~1.202. The corresponding formulas distribution law like Eq.(8) but replaces? by ofy=202.
within the NN approximation ar&,= —2U +UK? if K<1 We omit the details of tedious but straightforward trigono-
and E,=2U—U(K—)? if K—a<1. Thus, one can con- metric calculations and only quote the final results.
clude that LR interactions affect the position of both the It can be easily shown that the sum in Eg5) is exactly
bottom and the top of the band as well as the DOS of 10equal to zero ifk+k’=N+1. Particularly, this means that
excitons. As we can see, the bottom and top of the banéw =0 for k=k’=(N+1)/2 whenN is taken to be odd,
change, respectively, shift from-2U to —2U{(3)~ i.e., the first-order correction to the central energy is exactly
—2.404J and from 2J to (3/2)U¢(3)~1.803J. The DOS equal to zero and does not fluctuate. Fluctuations of the other
decreases approximate|y by the fact6n|E| in the V|C|n|ty Akk’ are distributed aCCOfding to the Gaussian function with
of the bottom of the band and, on the contrary, grows by thevariances of the diagonal and off-diagonal elements distribu-
factor 1/In 2 close the top. tion, o§(k) andofg(k,k'), given by
Finally, we would like to comment on the energy of the

central exciton band state, witk=(N+1)/2. In the NN o2(k)= (60U)? +cos( 2wk k¢N+1
model, one finds thak . 1),=0, while with including all d N+1 N+1/]| 2’
dipolar couplings, this energy is shifted to (163
N 60U)? 7wk
1 n 2 ' _( o _
E(N+1)/2:_2U2 5003(7)~0.225U. (13 Tha(kK')= N+1 1+COS(N+1)
n=1
k'
The DOS in the vicinity of the band center does not change XCOS( m) , k+k’#N+1. (16b

noticeably as compared to the NN model.
From Eq.(16) one can conclude that, in the case of off-
B. Motional narrowing effect diagonal disorder, the motional narrowing effect is also
_ o present as it takes place for diagonal disordere., both
In the presence of disorder, the Hamiltonian of the SySte”Fnagnitudes in Eq(16) scale as i+ 1) 1. We should point
can be written as a sum of two parts: the unperturbed ongy that, in contrast to diagonal disorder, here the magnitudes
(10) and a term produced by the fluctuationstbf,, o4 ando,q are functions of the state numbers. Note also that
o4(k) goes through its minimum value exactly at the center
of the exciton band, i.e., &=(N+1)/2 andk=N/2 atN
taken odd and even, respectively. In fact, we can also assert
this with respect to the value af,4(k,k’) sincek andk’
cannot differ greatly provided the conditian,y(k,k")<<U.
To conclude this section let us comment on the validity of
the motional narrowing effects. Obviously, this is valid only
(14b  wheno,q<|Ex—Ey1|. In this case, the excitonic states are
_ _ not mixed by the perturbation and remain extended over the
where 6U,,=U,,—U, whereU means averaging over the whole chain. They are essentially mixed for the opposite sign
probability distribution(8). HereA ., have diagonal and off-  of inequality, reducing their localization lengths. Then, the
diagonal parts. The former is responsible only for the inho-number of sites within the region of localizatioN?{) drives
mogeneous broadening of excitonic levels, while the lattethe motional narrowing effect rather than the whole number
couples the excitonic modes and, therefore, causes the locak the chainN. In Refs. 19 and 22 a self-consistent rule for

N N
H=2, EJki(Kl+ 2 Awlk)(k'|, (148
k=1 kk'=1

N

2 .
Akk’ :m m’;:]- oU mnS|n

ak'm
N+1

akn)
N+1/>"

ization effects. estimation ofN* is carried out.
The A, undergo fluctuations becaus®),,, fluctuate.
Assuming NN coupling and thatU ., fluctuations are small IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

in some sensésee beloy, we can find the\ ., distribution
in an analytical form. This also helps us to comment on the Further, we will mainly focus our attention on the normal-
results of numerical simulations that we discuss later in Sedzed density of states(E) and on the degree of localization
V. [inverse participation rati§lPR)] for the states at enerdy.

In order to achieve the task, we use the definition They are defined, respectively, as folloWs:
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FIG. 1. Density of states in the frame of NN coupling when the  FIG. 2. Density of states in the frame of NN coupling when the
lattice size isN=2500 and the degree of disorder (8 oy degree of disorder isyy=0.08 and the lattice lattice size {8)
=0.02,(b) 0.04, and(c) 0.16. N=1000, (b) 1500, and(c) 2500.

1 ues of the disorderdyy=0.02,0.04,0.16 from top to bot-
p(E)= N< Ek: o(E— Ek)>= (178 tom). We observe that the DOS is symmetric about the cen-
ter of the band. The singularities at the edge of the exciton
1 N band are smeared out on increasing the degree of disorder.
L(E)= _< > b‘(E—Ek)( > aﬁn) > (17b Interestingly, a sharp peak in the DOS at the center of the
Np(E)\ & n=1 exciton band appears when the degree of disorder exceeds
ome threshold values{yy~0.03 for our model parameters
e will discuss this point further later. We have also ob-
served that the percentage of states in the DOS peak in-
creases with the degree of disorder. In addition, the ampli-
tude of the peak rises noticeably with increasing the number
N of sites in the lattice, as seen in Fig. 2 fog\=0.08.
E U nmakm= Exan - (18 The IPR presents an overall increase when the degree of
m=1 disorder increases, meaning that the larger the degree of dis-
order, the smaller the exciton localization length. This is
clearly observed in Fig. 3, where we show the IPR as a
nction of the exciton energy for the same parameters of

where the angular brackets indicate an average over an e
semble of disordered linear chains and #g is the eigen-
vector of the Hamiltonian7) corresponding to the eigen-
valueE, with k=1,2,3... N,

The IPR behaves like W/ for delocalized states spreading
uniformly over the entire system on increasiNgln particu-

lar, the IPR can be exactly computed for the eigenstates (Jlf :
the periodic lattices given in Eq9). In doing so we obtain ig. 1. However, the increase of the IPR strongly depends on

the expected behavior fdd— . On the contrary, localized the energy, being more pronounced close to the center of the

states exhibit much higher values. In the extreme case, wh%ﬁnd' Simultaneqqsly W.ith the occurrence of the peak of the
the exciton is localized at a single site, the IPR become 0S, a hardly visible dip arises in the IPR at zero energy.

unity. Therefore, the scaling analysis of the IPR as a function

of the system size provides valuable information about the 0.4 o
nature of the excitonic states. We should mention that a com-

plete multifractal analysis, accomplished by studying the 0.2 -
scaling of the other moments of the probability distribution, \ j
is beyond the scope of this work. 0.0 ‘

We have solved numerically the eigenvalue problé®) b
for different values of disorder, namely, the mean fluctuation 0.2 1
of the NN distancegyn= \20, to study the features of both

)

the DOS and the IPR discussed above. In our numerical 0.0 k , J/d
treatmentoyy ranges from Q(periodic latticey up to 0.32 A

whereas the maximum system size we have considered is 0.2 1

N=2500. Results comprise averages over 50 realizations of

the disorder for each given pair of parametraind oy - 0.0

IPR

4 2 0 2 4
A. Nearest-neighbor approximation E

Let us comment on the results we have obtained for the FIG. 3. Inverse participation ratio for the same cases shown in

NN approximation. Figure 1 shows the DOS for the largestrig. 1. Notice the overall increase on increasing the degree of dis-
lattice size we have considered € 2500) and different val- order.
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FIG. 4. Inverse participation ratio for the same cases shown in FIG. 6. Density of states in the frame of LR coupling when the
Fig. 2. The inset shows an enlarged view of the center of the bandattice size isN=2500 and the degree of disorder (8 oy
=0.02,(b) 0.04, and(c) 0.16.

This dip is better revealed for larger lattices, as it can be seen
in Fig. 4 for the same parameters of Fig. 2. singularity rather than to the famous Dyson singularity
As mentioned above, the scaling of the IPR with the lat-~ 1/|E[In%E|. This singularity was found first for a special
tice size may be useful to discern the nature of the eigendistribution of the NN hopping integral in the form of a
states. The IPR at the center of the band for different valuegeneralized Poisson functidh.Second, the corresponding
of the degree of disorder is plotted in Fig. 5 as a function ofeigenstates show no tendency to delocalization with rising
the lattice size. The IPR for periodic lattices scales very aclattice size contrary to the opposite statement done in Ref. 9.
curately as M, hence indicating that their eigenstates spreadVoreover, they are not more delocalized than those of ener-
uniformly over the whole lattice. As soon as some amount ofjies close to zero.
disorder is introduced in the system, the IPR follows a power
law for smallN but tends to a constant value for laiye as
plotted in Fig. 5. The critical size for which deviation from ) ) ] ) ] ]
power fit occurs decreases upon increasing the degree of dis- Effects of inclusion of all dipolar interactions in E€L8)
order. The constant value of the IPR for layeincreases ©n the DOS and IPR has been already discussed in Ref. 17.
with the degree of disorder, indicating that the eigenstates dyévertheless, it has been done only for a fixed value of the
the center of the band actually become more localized. ~ chain length N=250) and the degree of disordew (
Summarizing these observations for the NN approxima=— 0-08). Below we present our DOS and IPR numerical data
tion, we are led to two main conclusions. First, the zero-Obtained by varying bothN ando-. _ _
energy peak of the DOS really exists. Moreover, as its width Figures 6 and 7 show the results of.numencal calculations
when the latter ranges over the interval used in our simuladegree of disorder and=2500. Here, one can observe the

tions), we are inclined to identify this peak with &like ~ usual changes of both magnitudes as compared to those in
the NN approximation: asymmetry and shift of the excitonic

B. All interactions

0

10 04
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FIG. 5. Scaling of the inverse participation ratio with system
size for the eigenstates at the center of the band. Labels indicate the FIG. 7. Inverse participation ratio for the same cases shown in
degree of disorder. Fig. 6.
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band edges, both in a good agreement with the analyticalause for the occurrence of the zero-energy peak in the DOS
results presented in Sec. Il A. can be proposed. As we have already noted in Sec. lll B, the

In addition, some new features appear, namely, the pedfrst-order correction to the central energy is equal to zero for
in the DOS has a finite width and is shifted from zero energychains with an odd number of sites and has a minimum of
to a somewhat higher valug,e,~0.21U for low degree of fluctuation in the case of an even number of sites. The zero-
disorder, in full correspondence with the results of numericaknergy peak indicates that the central band eigenenergies are
simulation done in Ref. 17. Higher values of the degree oimore stable to perturbations than the remaining ones. This
disorder lead to a smaller energy shift. Further, a peak in theertainly will result in a peak of the DOS after averaging
IPR appears at the same energy as the DOS peak, with aver realizations of disorder. It is remarkable that simula-
finite width as well. The last observation means that thetions done for a special type of disorder—which has no ef-
states forming the DOS peak become more localized as confiect on a certain excitonic level in the sense that the first-
pared to those with close energies, in contrast to the case ofder correction to the energy vanishes—show an analogous
the NN interaction. This is also confirmed by the scaling ofpeak in the DOS at this enerd$.Thus, thisempirical rule
the IPR forEe, with the system siz¢not shown herg In can serve for inspecting the appearance of peaks in the DOS
all cases we observe higher values of the IPR in comparisofor the tight-binding Hamiltonian. As the last treatment does
with those shown in Fig. 5. Besides that, the trend is similarpot use any specific peculiarities of the NN-randomness dis-
that is, the IPR scales asNl/only for perfect lattices, tribution, it seems to be suitable for any other distribution.
whereas it tends to a constant value for nonzero degree d¥e suppose that, for the model considered in this paper, both
disorder. mechanisms discussed above contribute to the formation of
the zero-energy peak in the DOS.

Concluding this subsection, note that the degree of local-
. o ization of the central states obtained from the numerical

Now let us discuss the origin of the features of the DOSgjmuylation is in a good agreement with the theoretical esti-
and of the IPR found in numerical simulations. mates based on a self-consistent rule proposed in Refs. 19

and 22(see the first paragraph of the present subsection

C. Discussion

1. NN interaction

Obviously, the zero-energy peak in the DOS might appear 2. All interactions

when the states at the center of the exciton band become As it was stated in Ref. 17, the energy shift of the DOS
localized, i.e., their localization lengths are reduced to valuepeak,E.,~0.21U, agrees very well with the energy of the
less than the lattice size. This occurs when the reduced deentral band state in the absence of disorder, (E8).. We
gree of disorder due to motional narrowing;,4(0,0)  are also inclined to relate this peculiarity to a state of analo-
=60yWU/(N+1)Y2 exceeds the energy spacing at the cengous origin, i.e., similar to sinf/2). This can be demon-
ter of the band AE=27U/(N+1). Equalizing these two strated at least in the perturbative limit. Moreover, exploiting
magnitudes one obtains an estimation forthaeshold of  this analogy further, we should assume that the character
mean fluctuations of the NN distances to observe the peakhaving no amplitude on the half of sijesf the mentioned
o\ ~U/(N+1)¥2 Thusoi\~0.02 forN=2500, which is  eigenstate has not to be changed dramaticgltyleast, in
in a good agreement with the numerical data of Fig. 1. ~ averagg when passing from the NN model to the exact one,
With regard to the fact of why this peak appears, we caras it is the case for the problem without disordfer.
suggest two explanations that seem to be suitable for the The singularity of the DOS becomes broader with includ-
model under consideration. First, as the distribution of disoring all dipolar couplings. At least two effects can contribute
der we used has long tails then, owing to possible large flucto this broadening. As it was supposed above, the DOS peak
tuations of the NN distances, strongly interactiimerscan  results from the isolated segments of odd number of sites,
be created whose level splittings noticeably exceed the typiwhich, in turn, originate from large fluctuations of the NN
cal magnitude of the intersite interactith. Consequently, distances. At moderate magnitudes of disorder we are mainly
the whole chain is broken into several independent segmentiealing with, the simultaneous strong reduction of the dis-
in the sense that two adjacedimers produce a potential tance between a nearest-neighbor pair and the distances with
well for the exciton, localizing it into the segment boundedother neighbors is unlikely. Thus, for the very beginning, one
by them. As the zero eigenenergy is always present in &an consider adjacent segments as independent of each other.
segment with odd number of sites, one can expect a peak ifhen, the eigenenergy of the locdlelonging to a certain
the DOS at this energya similar explanation of the zero- segmentcentral band state will fluctuate, owing to fluctua-
energy peak of the DOS was suggested in Ref. IBe peak tions of the segment lengtisee Eq.(13)], and thus will
amplitude increases with disorder simply because of the risproduce inhomogeneous broadening of the DOS peak. The
ing of the number of segments as the degree of disordesecond probable origin of this effect is the coupling of dif-
grows. Appearance of such strongly interacting dimers iderent isolated segments due to the interaction with far neigh-
clearly seen from the fact that the IPR approaches 0.5 at theors.
DOS tails(see Figs. 3 and)4 In Ref. 17, the appearance of the IPR peak was explained
Recently, it was demonstrated that the Dyson singularitypy an exceptional property of this characteristic with regard
of the DOS appeared even for a boxlike distribution ofto the central band statk=(N+1)/2, characterized by the
disorder?® Then, the explanation above fails due to the ab-wave function[ 2/(N+1)]¥2sin(zn/2). Even in the absence
sence of large fluctuations of the NN randomness at a lovef disorder, the IPR defined by Egl7b) shows stronger
magnitude of the degree of disorder. In such a case, anoth&calization of this stat¢ £L=2/(N+1)] as compared to lo-
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calization of the remaining state§=3/2(N+1)].1" The au-  only off-diagonal randomness shows that the peak is really
thors of Ref. 17 asserted that the IPR peak in the presence pfesent. In the NN approximation, it is located at the center
disorder reflected a remnant of this special state in thosef the excitonic band and tends to convert to a singularity as
forming the peak. At the moment, we do not see any othethe size of the chain increases. The states belonging to the
explanation of the origin of this anomaly. If so, a similar peak are localized and do not display any tendency to delo-
feature might be manifested in the NN problem, too. Nevercalization with increasing chain size. Moreover, the degree
theless, as follows from our simulations done for the NNof localization(IPR) does not differ very much from that of
problem, the IPR displays a dip rather than a peak. Onghe surrounding states. The inclusion of couplings due to far
reason for such a difference may be the fact that the zertheighbors shifts the peak to a slightly higher energy

energy state is not exponentially localized in the NN problen*(%o_mu), while the IPR, in contrast to the NN problem,
(see Sec. )L It results in a larger extension of this state asgpgws a peak at the same energy.

compared to the others. In principle, such a large extension
can compensate the IPR anomaly coming from the special
character of the zero-energy stéii@ving no amplitude at all

on half of the sitesgiving rise to the same value of the IPR
at E=0 and at surrounding energies.
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V. SUMMARY
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