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Energy spectra of quasiperiodic systems via information entropy
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We study the relationship between the electronic spectrum structure and the configurational order of one-
dimensional quasiperiodic systems. We take the Fibonacci case as a specific example, but the ideas outlined
here may be useful to accurately describe the energy spectra of general quasiperiodic systems of technological
interest. Our main result concerns the minimization of the information entropy as a characteristic feature
associated with quasiperiodic arrangements. This feature is shown to be related to the ability of quasiperiodic
systems to encode more information, in the Shannon sense, than periodic ones. In the conclusion we comment
on interesting implications of these results on further developments on the issue of quasiperiodic order.

PACS number(s): 61.44.+p, 65.50.-+m, 71.20.—b, 05.90.+m

The notion of quasiperiodic order (QPO) has been given
a very different status in physics, depending on the perspec-
tive adopted by authors working on different fields. From a
theoretical point of view, the necessity to achieve a good
understanding of the transport properties of disordered sys-
tems has led a number of researchers to address the issue of
quasiperiodicity as somewhat intermediate between periodic
order and purely random disorder [1]. From this perspective
the notion of QPO assumes a subsidiary role as a mere way
to describe the conceptual transition from periodic order to
randomness. On the other side, from a practical viewpoint, it
has been progressively realized, starting from the works by
Merlin et al. [2] and Todd et al. [3] on quasiperiodic super-
lattices, that electronic devices with this particular kind of
structure offer interesting possibilities for technological ap-
plications. In this case the study of those characteristic fea-
tures directly related to the underlying QPO becomes inter-
esting in its own right.

The electronic energy spectra of quasiperiodic systems
has been extensively studied in the framework of real-space
renormalization group techniques [4—6], where the original
system is decoupled into a certain number of minor sub-
systems according to a given, so called, blocking scheme
(BS). To date, two BSs have been proved to be remarkably
useful in describing on-site and transfer models within the
tight-binding approximation [5]. Less attention has been
paid, however, to more general mixed models, in which both
diagonal and off-diagonal terras are taken into account in the
system Hamiltonian. Such models are, of course, more ap-
propriate in order to describe realistic systems, where inter-
actions between their different constituents depend on their
specific chemical nature.

In this Rapid Communication we report on two general
results. On one side, we show that the BS originally pro-
posed to study on-site models can be extended to describe
mixed models, hence indicating its applicability to a wide
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variety of quasiperiodic systems. On the other side, we show
that this fact is related to the behavior of the information
entropy function associated with these systems. In spite of
our main conclusions holding for general one-dimensional
systems exhibiting QPO, in this work we focus on Fibonacci
arrangements for the sake of illustration. The reasons for this
particular choice are twofold. In the first place, energy spec-
tra corresponding to Fibonacci systems have been experi-
mentally probed in a variety of situations, confirming that
Fibonacci arrangements exhibit spectra with a hierarchy of
splitting minibands displaying self-similar patterns [7-10],
even when relativistic effects are taken into account [11]. In
addition, we have shown recently that this fractal structure of
the energy spectrum has relevant consequences on the dc
conductance of the system [12]. In the second place, the
widespread appearance of ordering patterns and structures
based on the Fibonacci sequence in many biological systems
is currently well established [13,14]. Therefore the basic
ideas inspiring our work can be applied to a large variety of
interesting systems.

Let us start by introducing our model Hamiltonian. We
shall consider a system describing a binary substitutional al-
loy in which the constituent atoms are arranged according to
the Fibonacci sequence. In general, a Fibonacci chain of or-
der N is generated from two basic units A and B by succes-
sive applications of the substitution rule A—AB and B—A
yielding a sequence of the form ABAABABA - - -. This se-
quence comprises Fy._, elements A and Fy_, elements B,
F; being the I/th Fibonacci number given by the recurrent law
F,=F, +F,_, with the initial values Fy=F;=1. In an ac-
tual alloy the hopping integrals describing the interaction
between nearest-neighbor atoms would take different values
depending upon the chemical nature of atomic species. In
order to take into account this fact, we propose a general
mixed model in the one-electron approximation. The interac-
tion of an electron with the host atoms is described by means
of d-function potentials. This is not a serious limitation since
the & function is a good approximation to more realistic
short-ranged potentials [15]. Therefore we consider the fol-
lowing Schrodinger equation in units such that A=m=1:
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where we are dealing with equally spaced atomic positions,
d being the nearest-neighbor atomic distance. We allow the
potential strength A, to take on two values, A4 and Ap,
arranged according to the Fibonacci sequence. Hereafter we
restrict ourselves to attractive potentials (A,>0) and take
Aa=1 without loss of generality. Expressing the electron
wave function as a linear combination of atomic
orbitals  Y(x)=Z2,C,¢p,(x—nd), where ¢, (x—nd)
= V\,exp(—M,Jx—nd]) is the normalized eigenfunction of a
& function placed at x=nd, and neglecting the overlap in-
volving three different centers, we obtain the following tight-
binding equation [12]:

(E - En)Cn = tn,n+ lcn+1+ tn,n— lcn-l 3

- @

where the on-site energies and the hopping integrals are
given by

€= 5 )\i’ 3
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A complete description of the resulting electronic spec-
trum can be found elsewhere [12]. Here we shall merely give
a brief summary of those results relevant to our purposes. In
our numerical simulations we have studied in detail different
realizations by varying the chain length N, the interatomic
distance d, and the ratio- @=Apg/\4 which accounts for the
chemical diversity of the alloy. In all cases considered we
have observed a well differentiated tetrafurcation pattern of
the energy spectrum, characterized by the presence of four
main subbands separated by well-defined gaps. Inside each
main subband the fragmentation scheme follows a trifurca-
tion pattern in which each subband further trifurcates obey-
ing a hierarchy of splitting from one to three subsubbands. In
Fig. 1 we plot a typical resulting integrated density of states
(IDOS) per unit length. Its staircase structure clearly shows
the tetrafurcation of the spectrum as well as its self-
similarity. At this point we shall exploit the capability of the
IDOS to provide a link between the occupation of the vari-
ous minibands appearing in the spectrum and the underlying
atomic arrangement. In fact, since each atom in the chain
contributes with one electronic state to the energy spectrum,
the fraction of states is directly related to the heights of the
characteristic steps appearing in the IDOS. In this way, we
have measured the fraction of states appearing in the main
subbands, g;, for a wide range of both a and d parameters.
The measured heights yield the same values for all the model
parameters considered. These values agree within an error
less than 0.1% to q,=q.=7, q,=7" and g,=7%, where
r=(V5— 1)/2 is the inverse of the golden mean. These val-
ues completely agree with those obtained by Liu and Sritra-
kool for the IDOS corresponding to on-site models, which
were interpreted in terms of a BS associated with the exist-
ence of isolated A and B atomic blocks and AA diatomic
blocks [5]. In that model, the hierarchical splitting of the
spectrum is determined by short-range effects, and its overall
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- ~~~FIG. 1. Plot of the IDOS versus energy with model parameters

given by @=0.75, d=1.5, and N=987. The main subbands are
labeled by a, b, ¢, and d along with their respective fraction of
states. Note that the level population exhibits characteristic features
of a nonequilibrium system.

structure is due to the resonant coupling among states with
nearly the same energy. As a result, the number of energy
levels appearing at the first stage of the renormalization pro-
cess determines the number of main subbands in the corre-
sponding spectrum. Keeping this in mind, the convenience of
a renormalization approach in our mixed model is justified
by the following fact: we have observed that both the posi-
tion and widths of the main subbands of the spectrum con-
verge rapidly to stable values with increasing chain length.
This behavior, which is independent of the chemical diver-
sity of the alloy, has been referred to as asymptotic stability
of the spectrum [12] and it seems to be a quite general prop-
erty of both quasiperiodic [16] and homogeneously disor-
dered alloys [17]. The asymptotic stability hence suggests
that the number of main subbands in the spectrum is deter-
mined by short-range quantum effects, as it is required.
Therefore, according to the renormalization group ideas just
exposed, our obtained IDOS patterns indicate that we must
block the original Fibonacci chain into a sequence of isolated
A and B atomic blocks and diatomic AA blocks in order to
obtain the purported step heights. Thus we arrive at our first
main result, namely, that a BS, originally proposed to ac-
count for the energy spectrum of a very particular kind of
system, can be extended to properly describe more complex
and realistic quasiperiodic systems.

Now, this interesting result deserves some consideration,
since it indicates that the electronic spectrum of these more
general systems can still be accounted for by decimating the
original chain in terms of isolated A and B atomic blocks and
AA diatomic blocks, even if one allows for a significative
AB interaction, as we do in our model. This result strongly
suggests that we are facing a property associated with the
QPO, rather than a feature attributable to the particular
choice of the parameters describing the considered model. In
this regard, we feel it has not been previously stressed in the
literature that, for any arbitrary chain, quasiperiodic or not,
there exist a manifold of possible BSs which may be consid-
ered in principle. Hence the question arises as to whether a
particular scheme will be more appropriate than another in
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order to describe the energy spectrum splitting pattern. In the
rest of this paper we shall show that, for systems exhibiting a
QPO based on the application of a substitution rule, the more

appropriate BSs are those which minimize their associated

information entropy function, defined as follows.

Let us consider a general binary system composed of two
different species, A and B. Although we shall consider these
species to be completely general in nature, we shall refer to
them as “atoms” for convenience henceforth. According to
the above presented numerical results, it does not seem to be
necessary to consider blocks containing more than two atoms
in the first stage of the renormalization process, within the
weak-bound approximation. Then, the most complete BS to
be considered should involve isolated A and B atomic blocks
and AA, AB, BA, and BB diatomic blocks. As stated before,
there are many ways in which we can decouple the original
chain in a series of atomic and diatomic blocks, each
one producing a particular BS. Therefore we can assign
to each particular BS a probability set of the form
{P4-PB.Pan PaB:PBAPBR}> Where p; is the probability of
finding a given atomic or diatomic block along the blocked
chain. In the thermodynamic limit these probabilities are ob-
tained as p;=lim (n;/N), where n; is the number of j-type
blocks and N the total number of atoms in the chain. In this
way, we can consider the set of possible BSs as a statistical
ensemble in the usual sense and associate with it an informa-
tion entropy function given by

S=—k2, pjinp;, s)
J

where k is an appropriate constant. It then results that each
possible BS can be properly characterized by its information
entropy. Now, it is clear that the entropy function (5) will
also depend on the kind of order exhibited by the alloy we
are considering. Actually, it turns out that such dependence is
very special for systems exhibiting QPO. Let us consider, as
an example, the case of Fibonacci QPO. In order that the
probability set {p;} can describe a Fibonacci sequence we
must impose certain constraints onto the possible values of
the different probabilities appearing in it, namely, these prob-
abilities must satisfy the well-known Fibonacci limits,
lim(ng/ns)=r, and lim(ny/ny,)=7, along with the nor-
malization condition p,+pg+2(pas+pap)=1, which im-
plies that p,p=pps and ppp=0 in a Fibonacci chain. In
doing so, we get the following relationships:

ba= ’73( T—DPaB)>
Pp= TZ—PAB s
PAA='T2(T_pAB)a 6)

where, for convenience, we have left p,p as a free parameter.
By inspection of expressions (6) we see that the condition
p;=0 implies O0sp,p<=7? and that p, and pp cannot be
simultaneously zero. As a consequence, the original Fi-
bonacci chain cannot be decoupled into any series of di-
atomic AB and AA blocks alone. Thus we are led to the
conclusion that certain BSs are prevented by the QPO exhib-
ited by the system. Alternatively, it seems reasonable then
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FIG. 2. Plot of the information entropy curve versus the prob-
ability p, . The appropriate blocking schemes accommodate to the
minima of entropy function. See more details in the main text.

that certain BSs might be favored by the QPO. In order to
prove this point we evaluate the information entropy func-
tion associated with the Fibonacci chain making use of the
relations (6). In Fig. 2 we present its dependence on the
probability psg. The entropy curve exhibits a characteristic
maximum and two minima at the extreme points of its do-
main. The minimum at p,sp=0 corresponds to the level
populations observed in our IDOS and it is related to the BS
proposed by Liu and Sritrakool [5]. The minimum at
pap= T is associated with the consideration of three kinds of
blocks as well, namely, A isolated atomic blocks and AA and
AB diatomic blocks. The corresponding level population can
be obtained from (6) making use of the relationship
7'+ !=7""2 (n>2), and is given by the sequence
;7% 7% 7°: 7% No evidence has been observed in our nu-
merical simulations for this pentafurcation pattern of the
IDOS. The reason for this absence becomes clear from in-
spection of Fig. 3, where we show the behavior of the di-
atomic block energies, E44 and E,p, as a function of the

ENERGY

FIG. 3. Plot showing the behavior of diatomic block energies
E}, (solid lines) and E 3 (dashed lines) with interatomic distance d
for @=0.75. Energies corresponding to isolated A and B atoms are
also plotted for comparison (dotted lines).



R682

atomic distance for a fixed value of the chemical diversity, a.
In fact, we see that energy levels associated with the blocks
AA are always below the levels corresponding to the blocks
AB, hence indicating that the AB interaction is not strong
enough to force all B atomic levels to form AB diatomic
blocks in our model.

In this way we arrive at our second main result, namely,
that the most favorable BSs for a mixed Fibonacci system
are those which minimize their associated information en-
tropy. Although this result has been obtained for a particular
kind of QPO, we conjecture that the principle of minimum
information entropy, as a criterion to properly choose the
most appropriate BS, may hold for a broader class of quasi-
periodic systems as well. The reasons sustaining our assump-
tion rely on the following facts. In the first place, quasiperi-
odic systems do encode more information, in the sense of
Shannon, than periodic or random ones, since the informa-
tion content of a periodic chain is independent of length,
whereas that of a quasiperiodic system increases with length.
As a consequence, any quasiperiodic system will contain
more information than a periodic one if it is sufficiently long,
supporting our view that systems exhibiting QPO should
more appropriately be described in terms of minima of the
associated information entropy. In the second place, from the
IDOS shown in Fig. 1 we can see that high energy levels are
more populated than low energy ones at zero temperature.
This remarkable feature also appears in the IDOS describing
other aperiodic systems generated by the application of sub-
stitution rules, like Thue-Morse, period-doubling or Rudin-
Shapiro [18]. Therefore it is tempting to say that QPO de-
scribes far from thermodynamical equilibrium systems. The
fabrication of one-dimensional quasicrystals exhibiting short
Fibonacci stacking microstructure by means of nonequilib-
rium methods, such as rapid quenching from the melt [19] as
well as the growth of Fibonacci superlattice heterostructures
by molecular beam epitaxy [2], supports this point of view.
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Now, it is accepted that the information entropy equals the
thermodynamic entropy for equilibrium systems. There is no
claim, however, that the information entropy represents the
correct expression for the thermodynamic entropy of a sys-
tem that is not in equilibrium (or that it does not) [20]. In this
regard quasiperiodic systems could provide a suitable ex-
ample of nonequilibrium systems for which the information
entropy is quite different from its (vanishing) configurational
entropy.

In summary, we have obtained valuable results concern-
ing the relationship between the electronic spectrum struc-
ture and the information entropy content of a general Fi-
bonacci system describing a binary alloy. Our results
strongly support the view that QPO describes highly ordered
systems able to encode more information than crystalline
ones. By introducing a general approach to the study of qua-
siperiodic systems we provide a link between the atomic
arrangement and the electronic structure displayed by the
IDOS, indicating that the QPO describes systems far from
equilibrium. Therefore the maximization entropy formalism,
which has proved to be a good strategy of optimal prediction
for both periodic and random systems, does not seem to
work well for quasiperiodic ones. Finally, the general treat-
ment introduced in this work can be extended, in a straight-
forward manner, in order to describe energy spectra of qua-
siperiodic systems other than the Fibonacci one. Work in this
sense, regarding both electron and phonon energy spectra of
systems displaying QPO, is currently in progress, and we
expect to report on it elsewhere.
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