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Abstract

We present a multichannel model of magnetotunneling transport in unintentionally disordered double-barrier GaAs-
Al,Ga,|_,As heterostructures. The source of disorder comes from interface roughness at the heterojunctions. Disorder
break translational symmetry along the lateral direction and therefore electrons can be scattered off the growth
direction. The model correctly describes channel mixing due to these elastic scattering events. The magnetic field applied
to the double-barrier heterostructure splits the resonant level into a set of equally-spaced resonances, the level spacing
increasing with the magnetic field. We discuss the influence of the various parameters (epilayer widths and magnitude or

disorder) on the lineshape of the resonant levels.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recent advances in nanofabrication techniques,
such as molecular beam epitaxy, make it possible
to fabricate solid-state devices with high crystalline
quality. By these means, a large variety of
heterostructures were designed for both basic
and applied physics. Among them, resonant

*Corresponding author. Tel.: + 349139444 88;
fax: +34913944547.
E-mail address: adame@fis.ucm.es (F. Dominguez-Adame).

tunneling devices based on double-barrier struc-
tures (DBs) are currently under extensive investi-
gation for high-speed electronic and optoelectronic
applications. For instance, a GaAs-Al,Ga;_,As
DBs operating at THz frequencies has been
reported in Ref. [1].

Theoretical studies of the above systems usually
neglect possible effects of disorder in order to
simplify the analysis. However, carrier scattering
by impurities or other point defects and rough
interfaces decrease of electron mobility even in
good-quality heterostructures [2]. Consequently,
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more elaborated approaches should take into
account these imperfections to get a better under-
standing of tunneling process.

We developed a multichannel two-dimensional
model to calculate vertical transport properties
such as DC conductance and current in unin-
tentionally disordered GaAs-Al,Ga;_,As DBs [3].
In this work, we extend the above model to include
the effects of a magnetic field applied perpendi-
cular to the system plane. The source of disorder
comes from interface roughness at the heterojunc-
tions. We model the interface roughness by
protrusions of GaAs in Al,Ga;_,As. The lateral
and vertical sizes of the islands are stochastic
variables with given average values ranging from
few Angstroms up to few nanometers. Disorder
break translational symmetry along the lateral
direction and therefore electrons can be scattered
off the growth direction. The model correctly
describes channel mixing due to these elastic
scattering events, yielding a reduction of the DC
conductance in large systems. In this work we aim
to elucidate the relationship between magnetotun-
neling properties of the DBS and microscopic
parameters of the model (e.g. correlation length of
the surface roughness). In particular, the applied
magnetic field introduces a new length scale (the
magnetic length) that competes with other spatial
scales of the system, like the correlation length of
the disorder. Thus, the interplay of different
spatial scales could result in new phenomena that
were not studied in previous works [3].

2. Discrete model

We restrict ourselves to a two-dimensional
geometry for computational limitations, although
the generalization to three dimensions is rather
straightforward. We then consider the single-
electron Schrodinger equation in the YZ plane
within the framework of the one-band effective-
mass approximation. Close to the I' valley, this
approach leads to the Ben Daniel-Duke equation
for the envelope function y(y, z)

1
2m*

(I’ + eA)z + U(]/, Z) /C(y’ Z) = EX(.% Z): (1)

where —e is the electron charge and z denotes the
coordinate along the growth direction. We have
taken a constant effective mass m* at the I" valley
although this is not a serious limitation as the
model can be easily generalized to include a
position-dependent effective mass. U(y,z) is the
band-edge offset at position (y,z). The magnetic
field B is applied along the X-direction, as shown
in Fig. 1, and we can take the gauge A4 =
(B/z)(oa ) y)

We then consider a mesh with lattice spacings s,
and s. in the Y- and Z-directions, respectively.
Introducing the magnetic length £z = \/h/eB, the
envelope function at mesh points y(msy, ns.) = 7,
is obtained after discretization of Eq. (1)
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where the difference operators are 4,7, , = %, —
Am—1,n and AZXm,n = Xman — Xmpn—1-

After the discrete equation for the envelope
function is obtained, the two-dimensional transfer-
matrix approach can be used to calculate different
physical quantities. The envelope functions within
the contacts will be determined by the boundary
conditions. These boundary conditions are open in
the growth direction, and periodic in the lateral
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Fig. 1. Schematic view of the two barriers forming the
heterostructure, showing the interface roughness. The magnetic
field is applied along the X-direction, perpendicular to the
system plane.
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direction to minimize finite-size effects. The former
implies plane wave solutions in the Z axis, and the
latter yield an energy discretization on Y. As a
consequence, this discretization results in a num-
ber of transverse channels equal to the number of
segments in the transverse mesh direction. From
the Landauer—Biittiker formalism [4], the zero
temperature two-leads multichannel conductance
can be calculated using de Fisher—Lee formula [5].
For brevity we omit the details that were already
discussed in Ref. [3].

3. Interface roughness

Standard techniques, like scanning tunneling
microscopy [6-8] and X-ray scattering [9], have
been applied in recent years to quantitatively
assess structural properties of multilayers. In
particular, these techniques point out that unin-
tentional disorder appearing during growth de-
pends critically on the growth conditions and that
the interfaces are not flat. As a consequence,
translational symmetry in the plane perpendicular
to the growth direction is broken. The numerical
approach introduced above allows us to deal with
realistic models of disorder in a rigorous way.

In order to treat electron scattering by interface
roughness we have considered the formation of
islands at the interface between two consecutive
layers, having identical lateral sizes all of them and
being consecutive one to each other. In our model,
islands have heights that are randomly distributed
(see Fig. 2).

Thus, it is possible to express the rough profile
of the interface between two consecutive layers
defining the following height function

h(y) =1 wal0(y = n0) + 0[(n + D¢ — 3] — 1}.
3)

Here Ah(y) represents the deviation from the
nominally flat surface at position y, 0 is the
Heavyside step-function, { is the island width, w,, is
a random variable associated to the nth island that
controls the fluctuation around the mean value,
and 7 is the largest deviation—in absolute value—
assuming that the w,’s are uniformly distributed
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Fig. 2. Schematic view of a GaAs quantum-well with interface
roughness, showing that the heterostructure can be regarded as
an ensemble of ideal (flat interface) quantum-wells with random
widths along the growth direction and size { along the lateral
direction.

between —1 and 1. Hereafter n will be referred to
as magnitude of disorder.

4. Numerical results

We have performed numerical calculations in
order to study the effect of interface roughness on
the transport properties of GaAs-Al,Ga;_,As
DBS. In what follows the conductance G will be
expressed in units of Gy = 2¢?/h. The effective
mass is taken to be m* = 0.067m, m being the free
electron mass. The barrier height is set 0.30¢eV,
corresponding to 35% Al mole fraction. The
lattice spacings are s, = 10.0nm and s. = 0.3nm.

4.1. Flat interfaces

Before considering the effects of disorder, it is
illustrative to study the magnetotunneling effect in
the case of ideal (flat) interfaces of the DB. In the
absence of disorder and magnetic field, the
conductance at zero temperature displays a single
resonance peak below the barrier due to the
occurrence of a single quasi-bound state at the
quantum-well. The peak shifts upwards and
broadens as the magnetic field increases and finally
it splits into a series of equally-spaced resonances
when the field exceeds a critical value. Fig. 3 shows



296 M. Amado et al. | Physica B 369 (2005) 293-298

GIG,

E (eV)

Fig. 3. Normalized conductance as a function of the Fermi
energy for different values of the magnetic field. The interfaces
of the DB are flat. The widths of the barriers and the quantum-
well are 2.1 and 4.8nm, respectively. The inset shows the
dependence of the level spacing on the magnetic field.

the results when the widths of the barriers and the
quantum-well are 2.1 and 4.8 nm, respectively.
The conductance peaks at high field are equally
spaced, and their number equals the number of
channels. The energy spacing is found to increase
almost linearly with the magnetic field, as shown in
the inset of Fig. 3. The energy spacing is 17 meV
for B=7.0T in the DB with the chosen para-
meters. However, this energy spacing also depends
on the lattice spacing, namely the larger the lattice
spacing, the larger the energy spacing. Thus, we
will refer to lattice Landau levels (LLL) hereafter.
Conductance curves depend also on the geome-
try of the sample. Fig. 4 shows the conductance as
a function of the Fermi energy for B=6.0T and a
quantum-well width of 4.8 nm. Different curves
correspond to various barrier widths, indicated in
the legend. The LLL can be resolved when the
barriers are wide enough, while for narrow
barriers the levels merge into a structureless and
broad peak. This behaviour can be understood
from basic tunneling effects. The narrower the
barriers, the larger the coupling of the quasi-
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Fig. 4. Normalized conductance as a function of the Fermi
energy for different values of the barrier widths, indicated in the
legend. The interfaces of the DB are flat. The magnetic field is
B=6.0T and a quantum-well width of 4.8 nm.

bound state to the continuum, thus increasing its
energy width.

Similar effects should appear by varying the
quantum-well widths since the narrower the
quantum-well, the higher the energy of the quasi-
bound state, thus increasing the coupling to the
continuum. Fig. 5 shows the expected results for
DBs whose barrier widths are 2.1nm and the
magnetic field is B = 6.0 T. It is apparent that LLL
are resolved only for wide quantum-wells, where
the coupling of the quasi-bound state to the
continuum is smaller, thus decreasing its energy
width. Also notice that the average value of the
conductance for Fermi energy below the energy
barrier (0.3eV) increases when decreasing the
quantum-well width. This effect is due to the
increase of the transmission coefficient when
increasing the coupling to the continuum. A
similar effect is already observed by reducing the
barrier width (see Fig. 4).

4.2. Rough interfaces

Once we have discussed LLL in DBs with flat
interfaces, we now consider the effects of interface
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Fig. 5. Normalized conductance as a function of the Fermi
energy for different values of the quantum-well widths,
indicated in the legend. The interfaces of the DB are flat. The
magnetic field is B=6.0T and a barrier width of 2.1 nm.
Curves are shifted upwards to improve the clarity of the plot.

roughness, characterized by the magnitude of
disorder n and lateral size of the islands { given
in Eq. (3). Hereafter the conductance curves
comprise the average of 400 realizations of the
disorder.

According to the model of disorder introduced
above, the DB with interface roughness can be
regarded as an ensemble of ideal (flat interface)
quantum-wells and barriers with random widths
and size { along the lateral direction. This is
schematically shown in Fig. 2. The fluctuation in
the epilayer (GaAs and Al,Ga;_,As) widths
results in a random distribution of the couplings
of the local quasi-bound states and the continuum.
This randomness finally results in the broadening
of the resonant level (inhomogeneous broadening).
Therefore, larger fields should be applied to
observe LLL, as compared to ideal DBs with flat
interfaces. Fig. 6 displays the normalized conduc-
tance when the nominal widths of the barriers and
the quantum-well are 2.1 nm and 4.8 nm, respec-
tively. The lateral size of the islands is { = 10nm
and the magnitude of disorder is # = 0.3nm (one
monolayer). LLL are observed when the magnetic
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Fig. 6. Normalized conductance as a function of the Fermi
energy for different values of the magnetic field. The nominal
widths of the barriers and the quantum-well are 2.1 and 4.8 nm,
respectively. The lateral and size of the islands is { = 10 nm and
the magnitude of disorder is # = 0.3nm. Curves are shifted
upwards to improve the clarity of the plot.

field is larger than 6.5 T, whereas they are resolved
when B=5.5T in ideal DBs (see Fig. 3). This
result confirms our qualitative reasoning intro-
duced above.

Fig. 7 demonstrates that disorder smears out the
LLL as expected. For a fixed magnetic field, the
increase of the magnitude of disorder (Fig. 7a) or
the lateral size of the islands { (Fig. 7b) results in a
single structureless conductance peak.

5. Conclusions

In this paper we have numerically studied
magnetotunneling transport in a multichannel
two-dimensional DBs. To this end, we have
extended a previous method [3], based on a
discrete Ben Daniel-Duke equation, to include
an applied magnetic field. In particular we have
focused on the effects of unintentional disorder
(interface roughness) on magnetotunneling trans-
port. When disorder is negligible, the conductance
presents a single resonance peak below the barrier.
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Fig. 7. Normalized conductance as a function of the Fermi energy for B = 7.0 T. The nominal widths of the barriers and the quantum-
well are 2.1 and 4.8 nm, respectively. (a) { = 10 nm and different values of 7. (b) # = 0.6 nm and different values of {. Curves are shifted

upwards to improve the clarity of the plot.

The peak shifts upwards and broadens as the
magnetic field increases and finally it splits into a
series of equally-spaced resonances when the field
exceeds a critical value. The level spacing is
proportional to the magnetic field, then being
related to Landau splitting. Disorder tends to
mask the splitting, although well resolved peaks
appear for moderately high field and realistic
values of the disorder. The present model provides
a qualitative picture of the effects of lateral
disorder on the conductance. Therefore, our
results are the starting point for further develop-
ments, including electron—electron and electron—
phonon coupling.
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