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Abstract

We have reported a comparative study of dynamics of non-relativistic and relativistic electrons in
Kronig-Penney models with the use of discretized Hamiltonians in the context of the lincar combination of
atomic orbitals approach. We have carried out general formulations of both non-relativistic and relativistic
cases, by laking the atomic polentials appropriatcly as d-function potentials; then, we havc applied these
general formulations to obtain significant results regarding relativistic impacts on certain important aspects
of the elecironic energy spectrum of periedic, quasiperiodic and disordered systems.

1. Introduction

Point interaction potentials in one space dimen-
sion are widely used in condensed matter physics to
approximate more structured and more complex
short-ranged potentials. A point interaction poten-
tial means any sharply peaked potential approach-
ing the é-function limit. The rigorous mathematical
basis of such a definition may be found in the
monograph of Albeverio et al. [1]. One of the most
successful applications of the point interaction po-
tentials is the well-known Kronig-Penney model
[2]. In this model the interaction of one clectron
with the solid is replaced by an array of square
barrier potentials and then the d-function limit is
considered, The encrgy spectrum of the electron
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was found to consist of allowed bands and forbid-
den gaps as in the case in real crystals. Since the
Kronig-Penney model was introduced, it has been
applied to many fields of physics, like band struc-
ture and electron dynamics in ordered solids, impu-
rity levels, localization phenomena in disordered
solids and liquids [3], microelectronic devices
[4,5], properties of layered superconductors [6],
electronic transport in spontaneously dimerized
solids (Peierls transition) [7], or relativistic quark
tunnelling in one-dimensional nuclear models [8].
In addition, the capabilities of the Kronig Penncy
model in describing relativistic electrons in conden-
sed matter have been explored during the last dec-
ades. The issues which have been studied within the
relativistic framework are: bulk states in crystalline
solids [9-12], surface states [13.14], interface
states [15], electron states in disordered [16-20]
and quasiperiodic [21] solids, and tunnelling
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phenomena [22, 23]. Moreover, it has been recently
demonstrated [24] that the discretized forms of
both the Schrodinger and the Dirac equations for
any arbitrary potential in one dimension are equiv-
alent to a generalized Kronig—Penney model
Hence it is clear that this model is more than
a naive approach and it can take care of many
physical situations.

The transfer matrix method provides a valuable
help to solve the scattering problem of electrons by
an array of d-function potentials. This method is
particularly simple in the absence of any other
potential, such as those related to external electric
or magnetic fields. In this case the wave function in
the field-free region is a combination of plane
waves, which are the solutions of the free-particle
wave equation, However, one must solve the cor-
responding wave equation in the interatomic re-
gions when external fields are applied, and the
transfer matrix could be more complex; for in-
stance, Airy functions appear when a uniform elec-
tric field is applied to the solid. The transfer matrix
method is a continuous method, in the sense that the
solution of the problem is obtained by solving
a differential equation. An alternative (discrete)
method was proposed by Bellisard et al. [25] for
the non-relativistic wave equation. This method is
based on the Poincaré map associated to the
Schrodinger equation. The generalization of the
Poincaré map to the case of the Dirac equation has
been recently given by Méndez et al. [24]. This map
relates the value of the electron wave function at
three consecutive lattice sites by means of a three-
term recurrence relation. Dynamical systems tech-
niques are then used to find the electronic energy
spectrum. Although this approach becomes exact
and no information is lost in passing from the wave
equation to the Poincaré map, the three-term re-
currence relations involve the electron energy in
a rather complex fashion. Therefore direct
tridiagonalization is not possible and the ¢lectron
wave function is difficult to obtain in an accurate
manner; for instance, in the case of disordered sys-
tems with no external fields it is difficult to separate
the exponentially decreasing function from the ex-
ponentially growing solution, which is unphysical.

The aim of this paper is to report a comparative
study of dynamics of non-relativistic and relativis-

tic electrons in Kronig—Penncy models, on the
basis of discretized Hamiltonians in the context of
the lincar combination of atomic orbitals (LCAQ)
approach, avoiding numerical shortcomings of the
Poincaré map. The formulations for both non-rela-
tivistic (Section 2) and relativistic (Section 3) cases
are first carried out generally for arbitrary atomic
potentials which are finally replaced by appropriate
d-function limits. The general formulation with re-
spect to d-function potentials 1s then applied to
study relativistic impacts on certain important as-
pects of the electronic energy spectrum for periodic
(Section 4) and general lattices which include the
cases of quastperiodic and disordered systems (Sec-
tion 5). Section ¢ contains discussions and con-
clusions.

2. Non-relativistic LCAQ approach

We first consider an electron moving under the
action of a one-dimensional potential ¥ {x) and
assume that this potential is the superposition of
atomic potentials v;(x). Hence we are concerned
with the Schrodinger equation (throughout the pa-
per we use units such that h=c=1)

(_ Ly e xj)) Y= E¥(, ()

where x; is the position of the jth atom and the sum
runs over all atoms in the chain. In order to solve
Eq. (1) we take a L.CAQ solution of the form

¥ix)= Z cipi{x — x;). (2)
We have assumed that each atom only supports
one bound state, as occurs in the case of the J-
function potential, although more complicated
situations can be handled in a similar fashion. The
atomic orbitals ¢; can be found by solving the
corresponding Schrédinger equation

2
( L4 + tilx — xi)) Bilx — x;) = gip(x — x;),
m dx
{3)

g; being the electron energy in the isolated ith atom.
Inserting Eq. (2) in Schrodinger equation (1) and
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using Eq. (3) we get

Y I:s,- —E+ Y ulx— xj):| cih(x —x)=0. (4
i Jj#i

We proceed in the standard fashion to obtain the
electronic amplitude ¢; at any site. We multiply Eq.
(4) by ¢ (x — x;) from the left and perform the
integration along the whole chain. By doing so, we
are led to the following algebraic equation for the
amplitudes:

Z |:(£i —E)Au + Z Bkji:| =10, (3)

i J#Ei

where we have defined

A = jdx G (x — xe) dilx — x;) (6)

Byji = jdx O (x — xhodx — X)) ulx — x), P # T
(7

The above results become valid for non-relativis-
tic electrons for any superposition of arbitrary
atomic potentials v;. Calculations are simplified by
approaching these atomic potentials by d-function
potentials. In fact this approach is not so unrealistic
as one could expect: as we mentioned earlier, the
the d-function potential is usually regarded as
a good candidate to approximate more complex
short-ranged potentials [26]. Hence we take

vix — x5) = — 4;0(x — x;). (8)

We take the coupling constants A; to be positive,
thereby restricting ourselves to attractive d-func-
tion potentials. In this case the atomic levels and
the atomic orbitals are found to be

= = A, (9)
di(x) = /mix exp( — mi|x]). (10}

The explicit expressions for the coefficients 4, and
B, appearing in Eq. (5) are given by

. 2./ Akhi
A = & + (1 aki)(« M)

2=

x [Acexp( — mag|x, — xi)

— exp( — mailx, — xii)] (11)

and

By = —mh; S diexp( — migxy, — X
—mdilx; —x), i#j (12)

where &, 1s the Kronecker delta.

In order to find the electron wave lunction (2),
one must solve the algebraic equation (5). Clearly
this is prohibitive for systems of interest, where the
number of atoms is very large. It is convenient to
consider a suitable approximation to reduce the
number of coefficients involved in the calculation.
We suppose that electrons are tightly bound so that
overlap between orbitals of neighbouring atoms is
small, Whenever this condition is valid one can
replace 4y by &y, Concerning the three centre
integrals (7), we assume that the only non-vanishing
coefficients are By, ., since only nearest-neigh-
bour interactions are significant.

Taking into account these approximations, the
equation for the amplitudes is reduced to the fol-
lowing tridiagonal system:

(E—&)e = Bua+1C+1 T Ba—16 1 (13)

Unfortunately the tridiagonal matrix is not Her-
mitian, This is expected in view of the asymmetric
rolc of the ith and jth atoms in Eq. (12), although
the electron cigenenergics are real because Eq. (13)
is related to the Schrédinger equation (1). This
shortcoming occurs in LCAO treatments using
a non-orthogonal basis for expanding the electron
wave function. An approximate way to make the
matrix Hermitian is to define new non-diagonal
elements as follows [27]:

NR NR
L1 =tes k= = o/ Bk 1 Bt 1x 4 18- {14)

For convenience we introduce the superscript NR,
meaning non-relativistic approach, in order to fa-
cilitate the comparison with the corresponding
relativistic expressions (Section 3). The equaticn of
motion for the amplitudes now reads

NR NR . NR
(E—cy )= ls1Chrr T k16 1o (13)
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and the explicit expressions of the matrix elements
are
NR _ m.,

8 = — S Ak,

2

NR -
tokw 1 = — MAgAy oy

XCKP|: _%(’]-k + A+ X —-’Ck+1|]- (16)
Notice that in our approach on-site cnergies and
hopping integrals are mutually related and depend
on the nature of neighbouring atoms. This mcans
that these matrix elements are calculated ab initio
and no semi-empirical approximations are re-
quired.

3. Relativistic LCAO approach

In this section we deal with the LCAO approach
to the one-dimensional Dirac equation. We con-
sider a relativistic electron obeying the equation

. d
[— laa‘; + Bm + Z Uj(x - xj):| l]’(x)

=(E + m)¥(x), (17)

where now ¥ is a two-component spinor. o and
fi denote 2 x 2 traceless, Hermitian matrices; the
squares of these matrices are unity and they satisfy
the anticommuting relation «ff + px = 0. It should
be mentioned that the electron energy E does not
include the rest mass energy, so that the relativistic
energy is actually E + m. We may directly compare
this energy E with non-relativistic values. To solve
Eq. (17), we assume a LCAQ solution (2), where
now the atomic orbitals are two-component
spinors satisfying the equations

.d
|:— ma + fm + vp(x — xk)} rlx — xp)

= (&g + m) Prlx — x). (18)

We follow the tight-binding approach of the pre-
vious section in order to obtain an algebraic equa-
tion for the amplitudes similar te Eq. (13). Within
this approximation we assume that the overlap
between orbitals different atoms vanishes so that

[ dxdi(x — xi)hilx — x;} = 8, (7 denotes Her-
mitian conjugates). Restricting ourselves to nearest-
neighbour interactions the (non-zero) hopping inte-
grals in the present case are given by

Busxi1= jdx Pr (X 0X) Pr (X — X4 1 + Xi).
(19)

The presence of a product involving the atomic
orbital and the atomic potential at the same site in
Eq. (19) gives rise to some problems when the
o-function limit is taken (see Refl [28] and the
references therein), As pointed out by Sutherland
and Mattis [29], some ambiguities appear in taking
the limit o, (k} > — 2,6(x) at the outset in the Dirac
equation, because potentials of different shapes ap-
proaching the d-function limit give wave functions
reaching different values at the point of discontinu-
ity. The origin of these ambiguities was clarified by
McKellar and Stephenson [30], and it is related to
the fact that the Dirac equation is linear in mo-
mentum rather than quadratic. Due to this linearity
in momentum, the wave function itself must be
discontinuous at x = 0 in order to account for the
singularity of the potential term. However, the
product §(x)6(x), & being the step function, is not
well defined in the sense of a strict distribution-
theory, so that there exists arbitrariness regarding
the definition of relativistic point interaction poten-
tials. To avoid these problems we solve Eq. (19) for
any sharply peaked potential u,(x) = ve{x, &) satisfy-
ing the condition

J " ko) = — A 20)

-

¢ being a small positive parameter. We closely fol-
low the mcthod of Méndez et al. in dealing with
a Green function approach to the level shift under
the influence of relativistic point interaction poten-
tials [31]. Since atomic orbitals are continuous
functions of the variable x everywhere except at
x =0, we can write

Bk = [J_ dx ¢;(x) ,(x, L)] @il — Xp 1)

2h
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To find the integral appearing in Eq. (21) we con-
sider the Hermitian conjugates of Eq. (18),

di(x)
dx

o — pL(x)(Bm — & — m) = dini(x.e),

—1

(22)

and perform the integration on both sides along the
interval [ — g,¢&]. The integral of the second term con
the left-hand side of Eq. (22) vanishes in the limit
¢ — 0 since the elements of ¢ are not singular. The
integral of the first term can be found after intcgra-
tion by parts. Thus we find

li_r}g [.r dx ¢} (x) vk(x,c)}

= —i[pH0") — ¢l0 e, (23)
and finally from Eq. (21),

Buk: 1= —i[dl(0%) — {07 ) aghelxe — Xy 2 1)
(24)

Notice that the result becomes independent of how
the S-function limit is taken, thus aveiding the
arbitrariness discussed earlier.

The one-dimensional Dirac equation can be
exactly solved for a single point interaction poten-
tial satisfying Eq. (20). The explicit expression de-
pends on the representation for the matrices « and
B. In the case & = o, and § = 7., ¢’s being the Pauli
matrices, the atomic orbitals are given [32] by

- cos(4y/2)
=,/ A
ulx) S A (isin (A/2) sgn(x))
® expl — m|x|sin 4;), (25)
and the atomic energy is

g = — m(l — cosiy) (26)

In the non-relativistic limit and for weak coupling
(small 4,), the upper component and the energy
reduce to the non-relativistic atomic orbital (10) and
the non-relativistic energy {9}, respectively. Inserting
Eq. (25) in Eq. (24) we obtain the expression for the
coefficients By , 1 straightforwardly. As occurs in
the non-relativistic case, the tridiagonal matrix is not
Hermitian and we therefore define new hopping
integrals by means of a relation similar to Eq. (14).

Thus one finally gets the equation of motion of the
amplitudes in the relativistic case:

(E—F:E)L’k=f5k+1ck+l+tgk 1Ck— 15 (27)

where the superscript R means the relativistic ap-
proach and

sy = —m(l —cosiy),
the, 1= —msinksindy

xcxp[ —%(sinik 4sin ey )% — xkil—l.(28)

As cxpected, the values of f and th . ; reduce in the
weak coupling limit (small 4;) to the non-relativistic
expression (16) obtained by directly solving the
Schrédinger equation. This is seen by expanding Eq.
(28) in powers of the potential strength. Up to first-
order corrections, one gets

~2
& —akN“(l ;L;),

A+ A7 _
rfkl 1= Iﬁcki1 (1 - k—ﬁ“‘g . (29)

In particular we find that the absolute values of
relativistic on-site energies and hopping integrals are
smaller than the corresponding non-relativistic ones.
This result will be used later.

4. Periodic lattices

In the case of periodic lattices the Bloch theorem
allows us to find the electronic energy spectrum
analytically. For monoatomic lattices all the atomic
potentials and nearest-neighbour distances are the
same we lake 4, = Land |x, — X, 4 1| = d. Hence the
equations of motion (15) and (27) admit a Bloch
solution of the form

o = Cexpl(ixkd), (30)

where « is the crystal momentum and C is a con-
stant, The dispersion relation is

_ expimdl)/ =~ m
cosxd = T E (h+2A (31)
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in the non-relativistic case and

exp(mdsina) .
Ccoskd = ——L_zﬂ—)(lf-&-m—mcou) (32)
2msin® A
in the relativistic case. These expressions are to be
compared with those obtained by directiy solving
the non-relativistic (1) and relativistic (17) wave
equations for a periodic array of d-function poten-
tials { 10]. The exact dispersion rclation for negative
encrgies 1s

sinh g™®d

cosxd = coshg™ d — mdﬂ,w——

(33

in the non-relativistic case, where ¢g™* = ./ — 2mE,
and

sinh g*d
g*d
(34)

in the relativistic case, where ¢* = ./ — 2mE — E*.

Fig. 1 shows the exact and LCAQ dispersion rela-
tions in the non-relativistic case, where the on-site
energy is — 13.6eV (1 equals the fine structure
constant) and d = 3 A. With these parameters rela-
tivistic dispersion relations are similar to non-rela-
tivistic ones and plots are actually superimposed.

coskd = coshg®dcos A — (E + m)md sin A

—13.45
& —13.55
2
P
=]
$
&
& 1365 -

13795 ey :

0.00 0.25 0.50 0.75 1.00

kd/x

Fig. 1. Exact (full line) and LCAO (dashed line) non-relativistic
dispersion curves for a monoatomic chain with atomic energy
— 13.6¢V and lattice parameter d = 3 A

We observe that our LCAQO approach gives excel-
lent results in the central region of the Brillouin
zone. At the edges of the Brillouin zone difrac-
tion effects become important and one should
include more terms in the LCAO matrix to account
for multiple scattering. However, we can see that
the results are rather good within the tight-
binding approach even at the edges of the Brillouin
zone. Yor instance, the difference between exact
and LCAO energies at the bottom of the band
is only 4 meV,

For monoatomic chains, the non-relativistic and
relativistic bandwidths are directly proportional to
|t™®| and |t®|, respectively {we drop the subscript
since all atomic potentials are identical). In the case
of weak coupling, which is of interest in solids, we
can use Eq. (29) to find the ratio between relativistic
and non-relativistic bandwidths:

[t¥] At

) = 1 3" (39
This value indicates that a shrinkage occurs when
relativistic effects are taken into account. This effect
is also found when the ¢xact dispersion relations are
used [9]. In addition, other atomic potentials, such
as non-local scparable potentials [33] and Mathieu
potential [24,31], present a decrease of the band-
width when relativity is switched on.

When two kinds of atoms are arranged period-
ically (diatomic lattices), a gap is open. We now
study the relativistic effects on this gap within the
LCAO approach. Let us consider & chain in which
the unit cell consists of two different atoms with
coupling constants 4 and ', separated by a distance
d, and the lattice period is assumed to be 24. Starting
from the equation of motion for the amplitudes and
using a Bloch solution of the form

¢ = Cexp{2ixkd), (30)
the non-relativistic dispersion relation is found to be

coskd =

_explm(2 + 1)d/2] (E +§iz)(}j +—;3/1’2)

2min

(37)
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and the relativistic one is

exp[misini + sin A")d/2]
2msin Asin A’

coskd = —

x\/(E +m—mcosA)(E+m—mcost). (38

The energy gap E, is the difference between the two
roots of the dispersion relation at the Brillouin zone
edge (x = n/2d). Using Eq. (29) one obtains in the
case of weak coupling
Ef Aty it

it SRR
ENR 6

(39)

meaning that relativity causes a decrease of the band
gap.

5. General lattices

In this section we aim to study relativistic effects
on the electronic encrgy spectrum in general lattices;
they include disordered and quasiperiedic lattices
which are subjects of a great deal of work. We will
concern ourselves with the density of states (DOS)
when translational symmetries are absent. A widely
used method of approximating the DOS is based on
calculating its moments [34]. It is known that the
exact computation of the DOS from its moments
requires the knowledge of all of them. In addition,
this caiculation is unstable (the accuracy of the com-
putation must increase exponentially with the num-
ber of moments used [35]). However, some valuable
information of the energy spectrum is obtained from
the knowledge of the first few moments, as we will
show below.

Let s be the tridiagonal Hamiltonian matrix
whose elements are given by Eq. (16) in the non-
relativistic case and by Eq. (28) in the relativistic
case. The moment of order p of the density of eigen-
values of # is

o = T ), (0)

N being the number of atoms in the chain. In the
weak coupling limit we can use Eq. (29) to write

Hp= Hng — H, (41)

where H is a tridiagonal matrix whose elements are
given by

_ 1 .NR 2
Hy =178 Ay

_ 1 ,NR 2, =2
Hygoor = st 1 (A + Ak 1) (42)

Note that this matrix is of the order of A% with
respect 10 g and consequently a perturbation
treatment is justified. Moreover, it should be noticed
that all matrix elements of #°z, #'ng and H are
negative. This means thal moments of cven (odd)
order are positive {negative) in the relativistic as well
4s in the non-relativistic case.

Inserting Eq. (41) in Eq. (40), one has up to first-
order corrections
b= i = T R ) @3)
where we have used the fact that Tr{4B) = Tr(BA).
Since Tr(#fg H) is positive (negative) for p cven
(0dd), the following relations hold:

0 < py < pp®, peven,
0> puf > 4R, podd (44)

These results are general, in the sense that they are
valid for any kind of lattice we may consider. We
now comment on the physical meaning of Eq. (44).
The first moment (p = 1) gives the centroid of the
DOS, and Eq. (44) demonstrates that relativity raises
the whole spectrum. This result is also indicated
clearly by the fact that £f > &f®. The second mo-
ment (p = 2) gives an estimation of the width of the
spectrum, and Eq. (44) indicates that the relativistic
spectrum is shrunk with respect to the non-relativis-
tic one. This conclusion agrees well with the results
we have obtained in the case of the periodic lattices.
In addition, a shrinkage of the spectrum has also
been observed in Kroning—Penney models on
quasiperiodic lattices [21].

6. Discussions and conclusions

As we have seen earlier, the general formulations
of Sections 2 and 3 lead to many important results
concerned with the electronic energy spectrum of
periodic, quasiperiodic and disordered systems,
within the framework of discretized Hamiltonians;
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Section 2 is pertinent to non-relativistic electrons
while Section 3 takes care of relativistic electrons.
As regards the periodic case, the results collected
tn Egs. (35) and (39} arc quite significant. These
results express the relativistic impacts on band-
widths and gaps of monoatomic and diatomic
chains; they are likely to throw light upon relativistic
effects on electrical conduction and optical absorp-
tion of corresponding systems. With regard to
general lattices which include quasiperiodic and
disordered systems, the result expressed by Eq. (44)
is a very important one; this result shows the
relativistic impact on DOS, which is a vital entity in
connection with electronic spectrum in condensed
matter.

Finally, we would like to remark that, besides
yielding the above-mentioned important resulls, the
formulations of Sections 2 and 3 are capable of
providing us with information about relativistic im-
pact on localization length in disordered systems
where Anderson localization plays a major role; we
hope to report in the future our treatment of this
issue.
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