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Dicke effect in a quantum wire with side-coupled quantum dots
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Abstract

A system of an array of side-coupled quantum dots attached to a quantum wire is studied theoretically. Transport through the

quantum wire is investigated by means of a noninteracting Anderson tunneling Hamiltonian. Analytical expressions of the transmission

probability and phase are given. The transmission probability shows an energy spectrum with forbidden and allowed bands that depends

on the up–down asymmetry of the system. In up–down symmetry only the gap survives, and in up–down asymmetry an allowed band is

formed. We show that the allowed band arises by the indirect coupling between the up and down quantum dots. In addition, the band

edges can be controlled by the degree of asymmetry of the quantum dots. We discuss the analogy between this phenomenon with the

Dicke effect in optics.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum interference effects in quantum wires (QWs)
are potentially useful in nanotechnology since coupling to
the continuum states shows an even–odd parity effect in the
conductance when the Fermi energy is localized at the
center of the energy band [1–9]. Consequently, a fine
control of the electron transport can be achieved by
varying the external parameters of the QW.

In this context, we have recently considered new
quantum devices based on an array of quantum dots
(QDs) [10], a double QD [11] and nanorings [12] coupled to
a QW. The attached device acts as scatterer for electron
transmission through the QW and allows to tune its
transport properties. It was found that the conductance at
zero temperature through the QW shows a complex
behavior as a function of the Fermi energy: far from the
center of the band the conductance depends smoothly on
the Fermi energy, while around the center it develops an

oscillating band with resonances and antiresonances due to
quantum interference in the ballistic channel. Moreover,
the transmission phase of the electron carries information
complementary to the transmission probability. This phase
has been measured in QDs [13,14] and recently it was
reported that [15] the experimental observation of the
Fano–Kondo antiresonance in a QW with a side-coupled
QD. These experiments proved that transport through the
system has a coherent component.
In this work we report further progress along the lines

indicated above. In particular, we study theoretically
transport properties of a set of side-coupled double QDs
attached to a perfect QW. We find analytical expressions
for the transmission probability and transmission phase.
The transmission probability at the center of the energy
spectrum shows an energy spectrum with gap or allowed
band depending of the symmetry up–down, to be explained
below. In a symmetry up–down, an even–odd parity effect
in the transmission phase at the center of the band is
demonstrated. Moreover, we show that an allowed band is
formed in the asymmetric case and that the width of this
band can be controlled by suitable gate voltages. This
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phenomenon is in analogy to the Dicke effect in quantum
optics, that takes place in the spontaneous emission of two
closely lying atoms radiating a photon into the same
environment [16]. In the electronic case, however, the decay
rates (level broadening) are produced by the indirect
coupling of the up–down QDs, giving rise to a fast
(superradiant) and a slow (subradiant) mode. This close
analogy opens the way to exploit new electronic effects that
usually arise in atomic physics. In this regard, it has been
shown that coupled QDs display the electronic counterpart
of Fano and Dicke effects that can be controlled via a
magnetic flux [17]. Recently, Brandes reviewed the Dicke
effect in mesoscopic systems [18].

2. Model

The system under consideration is shown in Fig. 1. The
QW is attached to a N side-coupled double QDs. The
system, assumed in equilibrium, is modeled by a noninter-
acting Anderson tunneling Hamiltonian [3] that can be
written as H ¼ HQW þHQD þHQW�QD, where

HQW ¼ �v
X

i

ðc
y

i ciþ1 þ c
y

iþ1ciÞ, (1a)

describes the dynamics of the QW, v being the hopping
between neighbor sites of the QW, and c

y

i ðciÞ creates
(annihilates) an electron at site i.

On the other side, HD, given by

HQD ¼
XN

j¼1

X
a¼u;d

ead
y

jadja (1b)

is the Hamiltonian for the N side-coupled double QDs,
where dja ðd

y

jaÞ is the annihilation (creation) operator of an
electron in the QD ðj; aÞ, ea is the corresponding single
energy level. Here the index a refers to the up (u) and down
(d) QD, attached at site j of the QW. The coupling between
the two subsystems (QW and QDs) is described by the
Hamiltonian

HQW�QD ¼ �V0

XN

j¼1

X
a¼u;d

ðd
y

jacj þ c
y

j djaÞ, (1c)

where V0 is the coupling between the QW and one of the
QDs.

The Hamiltonian for the QW, HQW, corresponds to a
free-particle Hamiltonian on a lattice with spacing unity
and whose eigenfunctions are expressed as Bloch solutions

jki ¼
X1

j¼�1

eikjjji, (2)

where jki is the momentum eigenstate and jji is a Wannier
state localized at site j. The dispersion relation associated
with these Bloch states reads

o ¼ �2v cos k. (3)

Consequently, the Hamiltonian supports an energy band
from �2v to þ2v and the first Brillouin zone expands the
interval ½�p;p�. The stationary states of the entire
Hamiltonian H can be written as

jcki ¼
X1

j¼�1

a
ðkÞ
j jji þ

XN

j¼1

X
a¼u;d

b
ðkÞ
ja jj; ai, (4)

where the coefficient a
ðkÞ
j ðb

ðkÞ
ja Þ is the probability amplitude

to find the electron at site j of the QW [at the QD ðj; aÞ] in
the state k, that is, a

ðkÞ
j ¼ hjjcki and b

ðkÞ
ja ¼ hj; ajcki.

The amplitudes a
ðkÞ
j obey the following linear difference

equation:

oa
ðkÞ
j ¼ v a

ðkÞ
jþ1 þ a

ðkÞ
j�1

� �
; jp0 and j4N, (5a)

oa
ðkÞ
j ¼ v a

ðkÞ
jþ1 þ a

ðkÞ
j�1

� �
� V 0 b

ðkÞ
j;u þ b

ðkÞ
j;d

� �
; j ¼ 1; . . . ;N,

(5b)

ðo� eaÞb
ðkÞ
ja ¼ �V 0a

ðkÞ
j ; j ¼ 1; . . . ;N; a ¼ u; d. (5c)

The amplitudes b
ðkÞ
j;a can be expressed in terms of a

ðkÞ
j as

follows:

b
ðkÞ
ja ¼ �

V 0

o� ea
a
ðkÞ
j , (6)

From Eq. (6) above, Eq. (5c) becomes

ðo� ~eÞaðkÞj ¼ v a
ðkÞ
jþ1 þ a

ðkÞ
j�1

� �
; j ¼ 1; . . . ;N, (7)

where the site energy ~e � V 2
0=½ðo� euÞ þ 1=ðo� edÞ� de-

pends on the electron energy o. Thus, the problem reduces
to a linear chain of N sites of effective energies ~e. In order
to study the solutions of Eq. (7), we assume that the
electrons are described by a plane wave incident from the
far left with unity amplitude and a reflection amplitude r,
and at the far right by a transmission amplitude t. That is,

a
ðkÞ
j ¼ eikj þ re�ikj ; jo1,

a
ðkÞ
j ¼ teikj ; j4N. (8)

The solution in the region j ¼ 1; . . . ;N, can be written as

a
ðkÞ
j ¼ Aeiqj þ Be�iqj if jðo� ~eÞ=2vjp1,

q ¼ �cos�1½�ðo� ~eÞ=2v�,
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Fig. 1. N side-coupled double QDs attached to a perfect QW.
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a
ðkÞ
j ¼ Cekj þDe�kj if jðo� ~eÞ=2vj41,

k ¼ �cosh�1½�ðo� ~eÞ=2v�. ð9Þ

Inserting Eqs. (8) and (9) into Eq. (7), we get a
inhomogeneous system of linear equations for A;B;C;
D; t and r, leading to the following result: if jðe� ~eÞ=2vjp1,

t ¼ ð�2ieikN=DÞ sin k, (10a)

with D given by

D ¼ e�ik
sinðN þ 1Þq

sin q
� 2

sinNq

sin q
þ eik

sinðN � 1Þq

sin q
. (10b)

On the contrary, when jðe� ~eÞ=2vj41

t ¼ ð2ie�ikN=DÞ sin k, (10c)

with D given by

D ¼ e�ik
sinhðN þ 1Þk

sinh k
� 2

sinhNk
sinh k

þ eik
sinhðN � 1Þk

sinh k
.

(10d)

The transmission probability is given by T ¼ jtj2, and it
is related to the linear conductance at the Fermi energy eF
by the one-channel Landauer formula at zero temperature,
G ¼ ð2e2=hÞTðo ¼ eFÞ [19]. We also can obtain the
transmission phase as ft ¼ tan�1ðIm t=Re tÞ.

3. Results

To uncover the main features of the electron transport
through the QW and the effects of the attached QDs, we
now consider several physical situations. If jðo� ~eÞ=2vjp1,
the transmission probability and transmission phase
reduces to

T ¼
1

cos2ðNqÞ þ ðsinðNqÞ cotðk=2Þ= sin qÞ2
, (11a)

ft ¼ arctan
a cos k cosNk þ b sin k sinNk

a cos k sinNk � b sin k cosNk

� �
, (11b)

with a ¼ sinðN þ 1Þq� 2 sinNqþ sinðN � 1Þq and b ¼
sinðN þ 1Þq� sinðN � 1Þq. We note that the transmission
probability oscillates as a function of both N and q. On the
other hand, when jðe� ~eÞ=2vj41 we get

T ¼
1

cosh2ðNkÞ þ ðsinhðNkÞ cotðk=2Þ= sinh kÞ2
, (11c)

ft ¼ arctan
d cos k cosNk þ Z sin k sinNk

d cos k sinNk � Z sin k cosNk

� �
, (11d)

where d ¼ sinhðN þ 1Þk� 2 sinhNkþ sinhðN � 1Þk and
Z ¼ sinhðN þ 1Þk� sinhðN � 1Þk. Therefore, in this energy
region N tends exponentially to zero when N is large,
namely T�e�2Nk.

To avoid the profusion of free parameters, for the sake
of clarity we set the energies of the up and down QDs as,
eu ¼ DV and ed ¼ �DV , hereafter. We first consider the
case DV ¼ 0. In this case the transmission exhibits a
forbidden band (gap). Fig. 2 shows the transmission
probability versus o for different values of N. It is
apparent that T tends to zero within a range ½�2g; 2g�,
with g ¼ V2

0=2v, and the system shows a gap of width 4g.
Inside the energy region ½�2g; 2g� the conductance does

not present any feature that depends on N. However, at the
center of the band (o ¼ 0, k ¼ p=2, k!1) the transmis-
sion phase takes on the following values, depending on the
parity of N: When N is odd, ft !�p=2 for o!�0, while
for N even, ft ¼ 0 for o ¼ 0. We can understand this result
as follows. Each time that the electron passes near a double
QDs, it undergoes a phase change equal to p=2 due to the
destructive interference between the discrete levels in the
double QD and the continuum states of the QW.
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Fig. 2. Transmission probability as a function of energy, in units of

g ¼ V2
0=2v, for DV ¼ 0 and (a) N ¼ 2, (b) N ¼ 3, (c) N ¼ 4 and (d) N ¼ 5.
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Fig. 3. Transmission phase versus energy, in units of g ¼ V 2
0=2v, for

DV ¼ 0 and (a) N ¼ 2, (b) N ¼ 3, (c) N ¼ 4 and (d) N ¼ 5.
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Consider now the situation with DVa0. Fig. 3 shows the
transmission probability for different values of DV , for
N ¼ 4 and 5. We note that an allowed band develops at
the center of the gap. It is straightforward to show that for
DV5g the width of this allowed band is DV 2=2g. More-
over, the transmission probability becomes always unity
at the center of the allowed band, independently of the
value of N.

Fig. 4 displays the transmission probability for several
values of DV when N ¼ 4 (solid line) and N ¼ 5 (dashed
line). We note that the shape of the allowed band is
independent of the value of DV . Additionally, Fig. 5 shows
the transmission phase for a similar set of parameters in the
region of the allowed band. We note a series of
discontinuities of the transmission phase at some values
of the energy o. It is worth to note that the drops in the

transmission phase do not imply vanishing transmission
probability. At the energies of the drops of the transmis-
sion phase, the real part of the transmission amplitude
vanishes and at the same time its imaginary part changes its
sign. Additionally from Eq. (11b), we obtain that the
transmission phase is zero (or mp, m integer) at the center
of the allowed band, independent of the value of N and
DV . At the same time, the transmission probability
becomes unity.
This phenomenon resembles the Dicke effect in optics,

which takes place in the spontaneous emission of a pair of
atoms radiating a photon with a wave length much larger
than the separation between them [16]. The luminescence
spectrum is characterized by a narrow and a broad peak,
associated with long- and short-lived states, respectively.
The former state, weakly coupled to the electromagnetic
field, is called subradiant, and the latter, strongly coupled,
superradiant state. In the present case this effect is due to
the indirect coupling between up–down QDs through the
QW. The states strongly coupled to the QW yield a
forbidden band with width 4g and the states weakly
coupled to the QW give an allowed Dicke band with width
DV 2=2g.

4. Summary

In this work we studied the transmission probability and
transmission phase through a QW with an array of side-
coupled double QDs. We found that the transmission
probability displays a gap or a band at the center of the
energy spectrum, due to destructive and constructive
interference in the ballistic channel, respectively. For an
array with symmetry up–down ðDV ¼ 0Þ only a gap
develops at the center of the band. For DVa0 an allowed
band arises at the center of the energy spectrum
independently of the value of DV . This phenomenon is in
analogy to the Dicke effect in optics. The set of side-
coupled double QDs seems a suitable system to study the
Dicke effect in experiments on quantum transport. This
effect could be used to develop nanodevices where an
extremely fine control of electron transport could be
achieved just by varying the gate potential of the QDs.
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