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Abstract

We present a novel model to calculate vertical transport properties such as conductance and current in unintentionally
disordered double-barrier GaAs—Al.Ga;—,As heterostructures. The source of disorder comes from interface roughness at the
heterojunctions (lateral disorder) as well as spatial inhomogeneities of the Al mole fraction in the barriers (compositional
disorder). Both lateral and compositional disorder break translational symmetry along the lateral direction and therefore
electrons can be scattered off the growth direction. The model correctly describes channel mixing due to these elastic scattering
events. In particular, for realistic degree of disorder, we have found that the effects of compositional disorder on transport

properties are negligible as compared to the effects due to lateral disorder.

© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Resonant tunneling (RT) through double-barrier
structures (DBS) make these systems very promising
candidates for a new generation of ultra-high speed
electronic devices. For instance, a GaAs—Ga;_,Al,As
DBS operating at THz frequencies has been reported
in the literature [1]. The basic reason for RT to arise
in DBS is a quantum phenomenon whose fundamen-
tal characteristics are by now well understood: There
exists a dramatic increase of the electron transmission
whenever the energy of the incident electron is close
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to one of the unoccupied quasi-bound-states inside
the well [2]. In practice, a bias voltage is applied to
shift the energy of this quasi-bound-state of nonzero
width so that its center matches the Fermi level. Con-
sequently, the j—F characteristics present negative dif-
ferential resistance when the quasi-bound-state lies
well below the Fermi level.

In actual samples, however, the situation is much
more complex than this simple picture. Scattering by
phonons, electrons or defects reduces the required
quantum coherence and, in fact, deviations from the
above simple description are observed. These scatter-
ing mechanisms explain the occurrence of side-band
resonant peaks due to the interaction with phonons
[3,4] and photons [5,6], hysteresis in the j—V char-
acteristics due to many body effects [7-9], and the
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decrease of electron mobility due to rough surfaces
even in good-quality heterostructures [10]. While
one-dimensional models successfully describe scat-
tering by electrons and phonons, they obviously can-
not account for all interface roughness effects. So far,
there are analytical results concerning the propaga-
tion of wave packets in a randomly layered medium
when the potential is a random function of only one
coordinate [11], but for a small number of layers, as
in DBS, in-plane disorder becomes important and one
expects such approaches to fail. Realistic models of
in-plane disorder, including power-like or exponential
spatial correlations observed by scanning tunneling
microscopy, usually lead to intractable analytical
models; hence the importance of numerically solvable
models to bridge this gap. An important contribu-
tion was already provided by Henrickson et al., who
applied the tight-binding Green function method to
interface roughness in DBS [12]. In this paper trans-
mission was studied for a DBS with a rather simple
model of disorder (periodic roughness with random
relative phases at the interfaces). A level splitting
was found for narrow well DBS and a dependence on
the roughness lateral size was observed.

In this work we present a two-dimensional model
of vertical transport in semiconductor heterostructures
that allowed us to carry out an extensive study of elec-
tron scattering by interface roughness. In particular,
we aim to elucidate the relationship between macro-
scopic properties of the DBS (e.g. conductance) with
microscopic parameters of the model (e.g. correla-
tion length of the surface disorder). The paper is or-
ganized as follows. The body of the paper is Sec-
tion 2, where we present our model based on the
effective-mass approximation, describing a disordered
sample (e.g. an imperfect DBS) connected to two per-
fectly ohmic leads (see Fig. 1). The Ben Daniel-Duke
equation is discretized, boundary conditions are dis-
cussed and scattering solutions are found by means
of the transfer-matrix method for any arbitrary het-
erostructure made of wide-gap semiconductors. After-
wards, expressions for two-terminal conductance and
current for unintentionally disordered DBS are pro-
vided. The model is worked out in a two-dimensional
space for computational limitations, although it will
be clear that generalization to three dimensions is
rather straightforward. Section 3 describes the various
models of disorder we have used to mimic structural
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Fig. 1. Schematic view of the sample. Regions I and III are the
electrical leads of the sample (contacts) and electrons undergo
scattering processes only at region II.

data obtained by transmission electron microscopy and
X-ray scattering. In Section 4 we present the numeri-
cal results and, in particular, the relationship between
macroscopic properties of the DBS with microscopic
parameters of the model. Finally, in Section 5 we dis-
cuss our results and the main conclusions of the work.

2. Model
2.1. Discrete equation

We consider the single-electron two-dimensional
Schrodinger equation within the framework of the
one-band effective-mass approximation. Close to the
I" valley, this approach leads to the Ben Daniel-Duke
equation for the envelope function

h? 02 02
[—W (ay2 + az2> + U(y,Z)] Y(y,2)

=Ey(y,2), (1)

where z denotes the coordinate along the growth di-
rection (see Fig. 1). Notice that we have taken a con-
stant effective mass m* at the I' valley although this
is not a serious limitation as the model can be easily
generalized to include a position-dependent effective
mass. We then consider a mesh with lattice spacings
ay and a, in the y and z directions, respectively. Defin-
ing 1, = —h*/(2m*a}) and t. = —h*/2m*a?), we
arrive at the following discretized version of Eq. (1),

tz(%-&-l,m + l/41—1,m) + ty(lﬂt,m-&-l + %,m—l)
+ (Upm — 2t = 2t W = EVpy . 2)
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The potential term U, , in Eq. (2) is given by the
conduction-band edge energy at the point (na,,ma.)
which, in turn, depends on the Al mole fraction in the
vicinity of that position. Consequently, both kinds of
disorder (lateral and compositional) are taken into ac-
count through this diagonal term (diagonal disorder).

2.2. Transfer matrix formalism

In order to solve the tight-binding-like Eq. (2) we
use the transfer matrix method based on the solutions
calculated for each slide of the system (a portion of the
system with index n constant) along the z direction.
To this end, we define
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non-consecutive slides. In particular, we can obtain
the expression of the envelope-function amplitudes in
the left contact as a function of the amplitudes in the
right one

(qso)yw)( du ) ©
ol PN+
where

N (tNES —My) —F
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7 nl:[1< N2 O > ( )

is the transfer matrix for the heterostructure.
2.3. Scattering solutions

We are interested in the scattering of electrons in-

Vo cident from the left contact. The envelope functions
% within the contacts will be determined by the bound-
n = ) , n=0,1,....N+1 (3) ary conditions. These boundary conditions are open
: in the z direction, and periodic on each slide, that is
Yo mt in the y direction. The former implies plane wave so-
' lutions in the z-axis, and the latter yield an energy
and
Ui — 2t — 2t ty 0 ty
ty U,o— 2t —2t, ty 0
M, = 0 ty U,,,3 — 2t —Zty 0 (4)
ty 0 0 Upy —2t. —2t,

Here M and N + 1 are the number of mesh divisions in
the y and z directions, respectively. Note that periodic
boundary conditions have been taken into account on
each slide, (A, )1 = (M w)i1 = t,. With these defi-
nitions, Eq. (2) can be cast in a more compact form

b\ [(CUES ) s
dn ) g 0
d)rl

)
¢n+l

where .# and O are the M x M identity and null ma-
trices, respectively. This expression allows us to re-
late by iteration the envelope-function amplitudes at

(5)

discretization on y. As a consequence, this discretiza-
tion results in a number of transverse channels equal
to the number of points in the transverse mesh direc-
tion. Considering by the moment U, ,, =0 at the con-
tacts and setting v, 1 = Y4 41, @ particular solution of
Eq. (2) is given by

1
!
lpn,m =

Here ./, is a normalization constant that is needed
for the different propagating modes to carry the same
current all of them. This normalization constant is
given by

N =—sin" | —

y

270
N valis Iazn, | =
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Note that we consider a dependence on the index /
of the momentum in the z direction. This is a conse-
quence of the implicit assumption that all the scatter-
ing processes in region II (see Fig. 1) are elastic, so
energy is conserved. Thus, for a given energy,

1 1 2ml
=—cos  ¢—|E-2 — =1 1e.
ki o cos {ZIZ[ ty (cos i )} + }

(10)

Finally, we can write a general solution of the scatter-
ing problem for an electron of energy E incident on
the scattering region on the / transverse mode. On the
left contact the solution will be of the form

1
=77
1

M ~
271

iﬁm ikjazn
e M e 1dz +
J=1

X e m ek (mop)el. (11)

J
On the right contact we have

1

. 2mj .
el DR elkja:n’

/ Moy
hom = 22 11j
Jj=1 J

(m,n) e1ll. (12)

The matrices 7 and f appearing in these two solutions
are the reflection and transmission matrices and they
are responsible for the channel mixing due to scat-
tering events. Thus, #;; represents the probability am-
plitude for an electron impinging in channel i to be
reflected into the channel j. Similarly 7;; represents
the probability amplitude for an electron impinging in
channel i to be transmitted through the scattering re-
gion II into the channel ;. Note that the solution within
region II is unknown. Actually, we are not interested
in this solution since all the physics of the scattering
problem is contained in the mixing matrices 7 and 7.
In the following, our main goal will be to relate the
elements of 7 and 7 to those of 7 ™) in Eq. (6).

We start by re-writing formally Eq. (2) as #Yy=E.
Now we perform the following transformation upon
the envelope functions:

Y=ty (13)

It is easy to see that the Hamiltonian is invariant under
such a transformation, that is, # = ' #f = #.

This is clear since 7 and % formally commute as they
act upon different vector spaces. The fact that # is
invariant implies that 7 ™) is not affected by trans-
formation (13) so it remains unchanged. In addition,
Egs. (11) and (12) are transformed into

glo— f: aj; ! ¢ 2Mﬂm elfian 4 % by
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respectively, where we have defined Z;U = Zi‘il f;lfsj
and a;; = fl_j]. For each channel / we can write the
transform of Eq. (6) as

(GG
! Phir

Now, introducing the definitions
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we arrive at the following transformed equation
(16) written in terms of the elements of the mixing
matrices:

&é JZ{O go dl
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71
:%m<2f>, (18)
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and, finally, we have

~l 4 —1 71
ci _ A B ) <l'>1:/71 ’ (19)
bl &/1 @1 (b]1v

that give us the matrix elements @;; and by ; with j =
1,2,...,M for each channel / in terms of the product
of two known matrices and the transformed solutions
(15) at the right contact for the / channel. It is worth
noticing that all the scattering information is contained
in the transfer matrix 7 ™). Thus, this quantity turns
out to be the fundamental object in the resolution of
the scattering problem.

2.4. Conductance and current

Once 4 and b have been calculated, obtaining 7 and
7 is an easy task. However, the matrices calculated
this way are the response matrices that contains some
non-physical information. This non-physical informa-
tion comes from the fact that we have been consid-
ering all the mathematical solutions of the scattering
problem, including those diverging at infinity. These
solutions are those for which momentum in Eq. (10)
is an imaginary number. In order to avoid the unphys-
ical solutions we will cancel out all the elements on 7
for which the incoming and/or the outgoing transverse
quantum number / satisfy the following condition:

2nl
E <2, ——1]. 20
<2ty <cos 7 > (20)

Once the physical mixing matrices are known, par-
ticularly the transmission matrix 7, we can use them
to calculate different physical quantities like the con-
ductance or the electric current. From the Landauer—
Biittiker formalism [13], the zero-temperature
two-leads multichannel conductance can be calculated
using de Fisher—Lee formula [14]

2
G= 2% Tr(f7). (21)

In order to calculate the electric current due to an ap-
plied field F we have to modify slightly our equations
and further approximations are needed. First of all,
we consider perfect leads, so no voltage drop occurs
within the contacts. Besides, we will not consider the
contribution to the current of electrons incident from

the right contact. This is a good approximation pro-
vided eV > Ep, where V' is the voltage drop along the
region I and Ef is the electron Fermi level on the con-
tacts. Finally, we will assume zero temperature so no
carrier statistics will be taken into account.

When an electric field applied along the growth di-
rection is considered, the potential U(y,z) in Eq. (1)
has to be replaced by U(y,z) + Up(z), where Ur is
constant in the contacts (Ug(z) = 0 in region I and
Ur(z)=—eV inregion III) and behaves linearly in re-
gion II, namely Up(z) = —eFz. Here F is the applied
electric field and V' = FL is the voltage drop across
the scattering region whose length is L. The electron
momentum on the right contact now reads

1 _ 1 27l
qlza—zcos 1{2& {EJreVZty <cosM lﬂ

+ 1}, (m,n) €l (22)

and solution in region III changes to

1 mi
el MM gldjan. (23)

i _Ml"\
lpn,m_ZI lj
j=

J

Bearing in mind all the approximations considered
so far, a new transfer matrix 7 ™) can be calculated
for each value of F'. Inserting solution (23) in Eq. (19)
we can obtain the mixing matrices for a given applied
field and then, using them, calculate the electric cur-
rent induced by that field. From the expression for the
probability current we can write the discretized ver-
sion of the electronic current density contribution of
channel / along the applied field direction across the
right lead (calculated on a slide » within the region
IIT) as

1 _€ka: 1
2= ha, M

M i
El Im[( n,m)* n1+1,m]‘ (24)

In order to calculate the total current density across
the sample, we just need to sum up over all the al-
lowed transverse states below the Fermi level at the
left contact, that is

Ceta, 1 MM ke .
— S [ Im[(,) Y] dk

=1
27'Eﬁay M m=11=1J0

Jz

(25)
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Notice that the electron momentum in the z direction,
k, varies continuously as the energy for an incident
electron can take values from 0 to Er. Here, klé is
the component of the electron momentum along the
z direction for an incident electron with transverse
quantum number / and an incident energy Ey. Using
the transmission matrix elements we finally arrive at

1
Ceta, 1 M M ke M M 1

J=1 — X | XXl ———=
2nhay M 25 Jo ST T NN
 2n(s—j)m . .
xe' T M el @TaEn[eitsa: _ o701 d k. (26)

The results we have obtained so far provide an ex-
act, although nonclosed, analytical description of any
two-dimensional heterostructure based on wide-gap
semiconductors, whenever the Ben Daniel-Duke
equation holds valid. Let us stress that the general-
ization to three-dimensional heterostructures is fairly
straightforward. With these results at hand, we can
compute the transport magnitudes we mentioned
above. All expressions are very simple and suitable
for an efficient numerical treatment for any specific
case. We will now evaluate them for unintentionally
disordered DBS to describe the relevant features of
the model.

3. Models of disorder

Unintentional disorder appearing during growth
in actual heterostructures depends critically on the
growth conditions. There exist several techniques, like
scanning tunneling microscopy [15-17] and X-ray
scattering [18], which have been applied in recent
years to quantitatively determine structural properties
of multilayers and superlattices. Precise information
about the nature and extent of defects at interfaces
is now available. Following Méder et al., disorder in
heterostructures can be classified into two categories,
namely lateral and vertical [19]. Lateral disorder oc-
curs whenever one semiconductor protrudes into the
other, forming chemically mixed interfaces, steps and
islands. As a consequence, the interface is not flat and
translational symmetry in the plane perpendicular to
the growth direction is broken. On the other side, ver-
tical disorder is observed whenever layer thicknesses
fluctuate around their nominal values. Compositional

h(y)
GaAs I— - -
T | I y
1 1 |
L — 1 I
¢
Al, Ga;_, As «—> T

Fig. 2. Steps and islands modeling lateral disorder (roughness) at
the interface between two epilayers.

disorder due to different local Al concentration in
each Ga;_,Al,As layer can be viewed as mixing of
vertical and lateral disorder.

3.1. Lateral disorder

In order to treat lateral disorder we have consid-
ered the formation of islands on the interface between
two consecutive layers, all of them having identical
lateral sizes, and being consecutive to each other. In
our model islands have heights that are randomly dis-
tributed (see Fig. 2). It is possible to express the rough
profile of the interface between two consecutive lay-
ers defining the following height function:

h(y)=n3_wa{O(y — nl)

+O[(n+ 1), —y]—1}. 27)

Here A(y) represents the deviation from the flat sur-
face at position y, @ is the Heavyside theta function,
is the island width, w,, is a random variable associated
to the nth island that controls the fluctuation around the
mean value, and # is the largest deviation—in absolute
value—assuming that the w,’s are uniformly dis-
tributed between —1 and 1. Hereafter  will be
referred to as degree of lateral disorder. In the
following, two models will be introduced. First of
all, uncorrelated disorder will be considered, for
which the random variables w, take values from —1
to 1 uniformly, satisfying the following correlator
(WyWp) = Oum/3, where 9, is the Kronecker delta.
This kind of correlator implies that the surface height
at each point of the growing surface is independent
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GaAs Alx Gal—x As

Fig. 3. Schematic view of the Al fraction mesh in the barrier
showing the distribution of Al concentration at different sites.

of the height on every point over the rest of the in-
terface. However, experimental data and theoretical
models of molecular-beam-epitaxy growth processes
[20] indicate that the heights of the surface at dis-
tant points are strongly correlated. To mimic this
situation, we will consider a second model of lat-
eral disorder where the w,’s are normally distributed
with zero mean satisfying the exponential correlator
(Wpwy) = exp(—|n — m|/E)/3, where £ is the correla-
tion length of the disorder.

3.2. Compositional disorder

Compositional disorder in GaAs—Al,Ga;_,As het-
erostructures is due to the lack of spatial uniformity
of the Al mole fraction during the heterostructure
growth process. We will simulate compositional dis-
order by defining a spatial two-dimensional mesh
over the Al,Ga;_,As barriers, as shown in Fig. 3.
We will associate a value x;; for the Al mole fraction
to each region of the mesh. This value will fluctuate
randomly around the nominal value of the Al fraction

on the barrier X. Thus we can write
x,-j =X + QWI']', (28)

where Q is the maximum fluctuation of the Al mole
fraction, and w;; is a random variable related to the
(i,7) point of the mesh, taking values uniformly be-
tween —1 and 1. Note that the overall averaged mole
fraction is equal to x.

4. Results

We have performed several numerical calculations
in order to study the effect of both lateral and com-
positional disorder over the transport properties of
DBS made of GaAs—Al,Ga;_,As heterostructures. All
the calculations correspond to zero-temperature con-
ditions unless others are stated.

4.1. Uncorrelated lateral disorder

We start by considering the effect of the interface
roughness, characterized by the degree of lateral dis-
order n given in Eq. (27), on the conductance. Fig.
4 shows the conductance calculated for different val-
ues of 1. Here a), = 10 nm, a; = 0.3 nm, { = 20 nm,
M =50, and N = 38. The barrier widths are 2.1 nm.
Their heights are also the same, 0.3 eV, and the well
width is 4.8 nm. The curves correspond to an ensemble
average of the conductance curves over 100 different
realizations of the lateral disorder. Three different val-
ues of 1 were studied, namely n# = 0 (perfect DBS),
n = 0.3 nm (largest fluctuation of the order of one
monolayer) and # = 0.6 nm (largest fluctuation of the
order of two monolayers). As a main result, it can
be seen in Fig. 4 that increasing the degree of lateral
disorder, 7, results in a decrease of the conductance
at the resonant energy. In order to check the effects
of temperature on the conductance we have plotted
this quantity at two different values of the tempera-
ture, 7 =77 and 300 K, using the Engquist—-Anderson
formula [21]. Fig. 5 shows the conductance for an or-
dered system and a disordered one with # = 0.3 nm.
In both the cases it can be observed that the conduc-
tance peak widens as temperature is increased and its
height is reduced. A reduction of the conductance is
still observed as a consequence of lateral disorder.
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Fig. 4. Conductance in units of 2¢%/k of an ordered DBS compared
with that of a disordered DBS for two different values of the
degree of lateral disorder #. The disordered results were obtained
by averaging over 100 realizations of the disorder. The inset
shows the shift of the first resonant peak towards lower energy
on increasing the degree of disorder.
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Fig. 5. Conductance in units of 2¢? /A of an ordered DBS compared
with that of a disordered DBS for two different values of the tem-
perature, 7 =77 and 300 K. The disordered results were obtained
by averaging over 100 realizations of the disorder. n = 0.3 nm in
the disordered case.
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Fig. 6. Current in arbitrary units as a function of the applied bias
along the z direction for an ordered DBS and a disordered one.
Curve was calculated by averaging over 50 realizations of the
disorder.

Notice that the zero-temperature resonant conduc-
tance peak slightly widens due to the fluctuations of
its energy for each realization of the disorder. Besides,
an additional effect can be seen, that is, as the degree
of lateral disorder 7 increases the conductance peak
shifts to smaller energies. This effect will be important
later in order to explain the j—F characteristic. Re-
garding the effect of the size of the islands, {, we have
observed that it can be neglected unless this size is of
the order of the electron wavelength, that is, for {> A,
the conductance does not depend on {. As expected,
when { ~ J. the electron starts to see the disorder
and then the conductance increases as { decreases, as
shown in Fig. 7. For energies about 0.1 eV this tran-
sition takes place at sizes { ~ 10 nm [12].

Current as a function of the applied bias is de-
picted in Fig. 6. For this calculation we have chosen
ay, =10nm, a. = 0.1 nm, { = 10 nm, M = 20 and
N = 77. The barrier widths are 2.1 nm for both the
emitter and the collector and their heights are also
the same, 0.25 eV. The well width is 2.9 nm. Curves
shown in Fig. 6 correspond to an average over 50 dif-
ferent realizations of the lateral disorder. The Fermi
level was fixed at 20 meV, the maximum applied bias
was 0.5 V, and #=0.3 nm. Surprisingly, current in dis-
ordered DBS is larger than that calculated in ordered
DBS. This counterintuitive result can be explained
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Fig. 7. Conductance in units of 2e%/k as a function of the size
of the islands for { ~ Z¢ (dotted line) and { < A, (dashed line).
Curves were calculated by averaging over 50 realizations of the
disorder.

recalling that conductance peak shifted to lower ener-
gies, as mentioned above. The lowering of the conduc-
tance peak can be understood assuming that surface
roughness makes the effective width of the quantum
well larger than its nominal value. This would im-
ply a lower transmission resonance so that the current
peak shifts toward lower bias. But an effective wider
well implies a higher current too, so in some statisti-
cal sense the current for the disordered DBS will be
higher.

4.2. Correlated lateral disorder

Upto now we have been considering only lateral
uncorrelated roughness at the heterojunctions. We
have also calculated the conductance for a DBS in
which interface roughness is an exponentially corre-
lated random variable, as described previously. Fig.
8 shows the conductance at a given energy about the
conductance resonance for the ordered case (where
fluctuations are lower), E. = 0.1025 ¢V, when the
correlation length varies several orders of magnitude.
Physical parameters of the DBS are the same as in
Fig. 4. The size of the islands is 20 nm and the degree
of lateral disorder is # = 0.3 nm. An average over
50 realizations of the disorder has been performed. It

244 - 1

242 - b 1

O 240 o 1

238 - -

236 [~ -

1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII I NI
100 10! 102 108 10%
& (nm)

Fig. 8. Conductance in units of 2¢2/ of a disordered DBS where
disorder is exponentially correlated, as a function of the correlation
length, for a fixed energy £.=102.5 meV. Each point of the curve
was calculated by averaging over 50 realizations of the correlated
disorder with fixed correlation length ¢&.

can be observed that the conductance increases as the
correlation length increases. Two asymptotic regimes
are clearly observed for small and large correlation
lengths, respectively. The former limit, ¢ — 0, can be
understood as the situation previously studied where
lateral disorder is uncorrelated. From a close inspec-
tion of Fig. 8 we come to the remarkable result that
this uncorrelated limit correctly describes transport
properties whenever the correlation length does not
exceed 10 nm. Then we are lead to an important con-
clusion, namely those models of electron transport
in disordered DBS based on the assumption that dis-
order is uncorrelated would yield right values of the
conductance even if the correlation length is not van-
ishing but fairly large. There is no need to mention
that uncorrelated disordered models are much more
convenient for analytical work than correlated ones.
The size of the plateau for which correlations in the
disorder do not play an essential role is governed by
the size of the islands, {, as might be expected. This is
due to the fact that only correlations of the lateral dis-
order whose correlation length is greater than the size
of the islands affect electron motion. For these sizes,
the conductance increases as the correlation length
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Fig. 9. Conductance in units of 2¢2 /4 for an ordered DBS compared
with that of a DBS with only compositional disorder for two
different values of Q. The inset shows enlarged view of the first
resonant peak.

becomes larger. This trend is observed up to sizes of
the order of 100 nm, namely the system size in the y
direction, and then the second regime appears. In this
regime the limiting value of the conductance can be
calculated as an average over different ordered DBS,
each one having barrier widths distributed normally.

4.3. Compositional disorder

Having discussed the effects of interface roughness,
let us now present our results regarding compositional
disorder. To clarify the effects of local fluctuations of
the Al mole fraction, we assume that the interfaces are
perfectly flat and that the width of the different semi-
conductor layers are exactly their nominal values, i.e.,
we neglect fluctuations of their widths. We show typ-
ical results in Fig. 9, where physical parameters are
the same as in Fig. 4. The spatial extent of the region
where the Al mole fraction can be assumed locally
constant was taken to be a=10nm and »=1 nm (see
Fig. 3). It can be observed that, for fluctuations as
large as Q = (.14, that is, height fluctuations of about
0.1 eV, when averaging over 100 realizations the con-
ductance is almost unchanged (only 3% variation).
This behavior is a consequence of the small electron

probability amplitudes within the barriers, where com-
positional disorder is considered to appear. In other
words, even moderately high spatial inhomogeneities
in the barriers scarcely affect the electron envelope
function. Thus, we can conclude that the effects of
compositional disorder can be disregarded as they are
much smaller than those of lateral disorder.

5. Conclusions

In this paper we have presented a method to study
vertical transport in two-dimensional semiconductor
heterostructures including some aspects present in
real samples, i.e., growth imperfections and current
leads. In particular we have focused on the effects
of unintentional disorder on electron transport when
translational symmetry along the normal plane to the
growth direction is broken by structural imperfec-
tions. Two different kinds of disorder leading to elec-
tron scattering have been presented, namely lateral
disorder and compositional disorder. Lateral disorder
appears as a consequence of the roughness present at
the interface between GaAs and Al,Ga;_,As. Com-
positional disorder is due to the inhomogeneity of the
Al mole fraction occurring during the growth process
of Al,Ga;_,As epilayers. We have shown that the
main effect of the lateral disorder is to decrease the
DBS conductance. When correlations are introduced,
conductance starts improving, the larger the correla-
tion length the higher the conductance. However, cur-
rent shows a surprising behavior, as it is higher in the
disordered case than in the ordered one. We attributed
it to an energy shift of the transmission resonance
of the DBS. Another important conclusion regards
the validity of uncorrelated disordered models; they
provide right values of the conductance whenever the
actual correlation length does not exceed the system
size, thus allowing a simpler theoretical description.
Finally, we have shown that the effect of compo-
sitional disorder can be disregarded as it is much
smaller than the effect of lateral disorder. The present
model provides a quantitative picture of the effects of
lateral disorder on the conductance. It should be no-
ticed that the peak-to-valley ratios are larger than that
obtained in experiments [22]. Therefore, our results
are the starting point for further developments, includ-
ing electron—electron and electron—phonon coupling.
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This improved model could be directly compared
with actual experiments.
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